• 제목/요약/키워드: GSHP %3A Ground source heat pump

검색결과 38건 처리시간 0.032초

지열히트펌프의 작동시간 경과에 따른 COP 변화에 대한 연구 (Study on COP Variations with the duration of Ground Source Heat Pump Systems Operation)

  • 이용규;백남춘;윤응상
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.198.2-198.2
    • /
    • 2010
  • In this study, the COP variation with the duration of Ground Source Heat Pump (GSHP) systems operation was analyzed by experiment. This experimental facility was installed in residential house as a back-up device of solar thermal heating system. The capacity of heat pump is 2.5 kW with a vertical bore hole of 150m depth. The COP of GSHP is varied, depending on the ground temperature which is used as a heat source. The ground heat source temperature influencing heating COP is the soil or rock temperature which adjoin with geo-source heat exchanger. This temperature is decreased rapidly according to the operation duration of heat pump. As a result, COP of GSHP is decreased to 3 in one hour of continuous operation time.

  • PDF

지열히트펌프와 지역냉난방 시스템의 운영사례를 중심으로 경제성 비교분석 연구 (A Study of Comparative Economic Evaluation for the System of Ground Source Heat Pump and District Heating and Cooling:Focusing on the Analysis of Operation Case)

  • 이기창;홍준희;공형진
    • 설비공학논문집
    • /
    • 제28권3호
    • /
    • pp.103-109
    • /
    • 2016
  • The purpose of this study is to perform comparative economic evaluation for the systems of ground source heat pump (GSHP) and district heating and cooling (DHC) by focusing on the analysis of operation case of GSHP. The adapted research object is a public office building located in Seoul. The capacity of ground source pump is about 3,900 kW. Ground heat exchanger is closed loop type. The analysis period for life cycle cost is 30 years. Economic evaluation is assessed from the viewpoints of the following four parts: initial cost, energy cost, maintenance and replacement cost, and environment cost. The total life cycle cost of GSHP is approximately 8,447 million won. The cost of the DHC System is approximately 3,793 million won. The cost of the DHC is approximately 46% lower than GSHP system under the condition of current rate for GSHP and DHC.

지중열교환기의 종류에 따른 열전달 성능에 관한 연구 (A study on the Heat Transfer Performance according to Ground Heat Exchanger Types)

  • 황석호;송두삼
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.75-80
    • /
    • 2010
  • Generally, ground-source heat pump (GSHP) systems have a higher performance than conventional air-source systems. However, the major fault of GSHP systems is their expensive boring costs. Therefore, it is important issue that to reduce initial cost and ensure stability of system through accurate prediction of the heat extraction and injection rates of the ground heat exchanger. Conventional analysis methods employed by line source theory are used to predict heat transfer rate between ground heat exchanger and soil. Shape of ground heat exchanger was simplified by equivalent diameter model, but these methods do not accurately reflect the heat transfer characteristics according to the heat exchanger geometry. In this study, a numerical model that combines a user subroutine module that calculates circulation water conditions in the ground heat exchanger and FEFLOW program which can simulate heat/moisture transfer in the soil, is developed. Heat transfer performance was evaluated for 3 different types ground heat exchanger(U-tube, Double U-tube, Coaxial).

물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구 (Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System)

  • 홍부표;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제34권1호
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

수직밀폐형 지중열교환기의 최적설계를 위한 설계인자 영향도 분석 (Sensitivity Analysis on Design Factor of Ground Heat Exchanger for Optimum Design of Vertical Ground Source Heat Pump System)

  • 배상무;김홍교;남유진
    • 대한건축학회논문집:구조계
    • /
    • 제34권3호
    • /
    • pp.87-93
    • /
    • 2018
  • Ground source heat pump(GSHP) system is one of the high efficiency heat source systems which utilizes the constant geothermal energy of a underground water or soil. However, the design of conventional GSHP system in the domestic market is dependent on the experience of the designer and the installer, and it causes increase of initial installation cost or degradation of system performance. Therefore, it is necessary to develop a guideline and the optimal design method to maintain stable performance of the system and reduce installation cost. In this study, in order to optimize the GSHP system, design factors according to ground heat exchanger(GHX) type have been examine by simulation tool. Furthermore, the design factors and the correlation of a single U-tube and a double U-tube were analyzed quantitatively through sensitivity analysis. Results indicated that, the length of the ground heat exchanger was greatly influenced by grout thermal conductivity for single U-tube and pipe spacing for double U-tube.

지열원 열펌프 시스템의 냉${\cdot}$난방 성능 평가 (Cooling and Heating Performance Evaluation of a GSHP System)

  • 손병후;조정식;신현준;안형준
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.71-81
    • /
    • 2005
  • The main objective of the present study is to investigate the performance characteristics of a ground-source heat pump(GSHP) system with a 130 m vertical and 62 mm nominal diameter U-tube ground heat exchanger. In order to evaluate the performance analysis, the ground-source heat pump connected to a test room with $90\;m^2$ floor area in the Korea Institute of Construction $Technology(37^{\circ}39'N,\;126^{\circ}48'E)$ was designed and constructed. This ground-source heat pump system mainly consisted of ground heat exchanger, indoor heat pumps and measuring devices. The cooling and heating loads of the test room were 5.5 and 7.2 kW at design conditions, respectively. The experimental results were obtained from July 2, 2003 to July 1, 2004. The cooling and heating performance coefficients of the system were determined from the measured data. The average cooling and heating COPs for the system were obtained to be 4.90 and 3.96, respectively. The temperature variations in ground and the ground heat exchanger pipe surface at different depths were also measured.

단독주택용 지열원 열펌프 시스템의 경제성 분석 (Economic Analysis of a Residential Ground-Source Heat Pump System)

  • 손병후;강신형;임효재
    • 신재생에너지
    • /
    • 제3권4호
    • /
    • pp.31-37
    • /
    • 2007
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HV AC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total pollutant emissions than the alternative HVAC systems considered in this work.

  • PDF

가정용 지열원 열펌프 시스템의 냉난방 성능 특성 연구 (An Experimental Study on the Cooling and Heating Performance of a Residential Ground Source Heat Pump System)

  • 공형진;강성재;윤경식;임효재
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.156-163
    • /
    • 2013
  • Ground Source Heat Pump (GSHP) systems utilize geothermal energy as a thermal source or sink, for heating, cooling and domestic hot water. It is well known that GSHP is environmentally friendly, and saves energy dramatically. For this reason, many investigative researches have been conducted on commercial and governmental buildings. However, studies on residential GSHP are few, because of the small capacity and cost. In this study, we experimented with the characteristic performance of heating, cooling and seasonal performance factor for a residential GSHP system, which consisted of two 180 m deep u-tube ground heat exchangers, a heat pump and measurement instruments. The installed capacity of the heat pump was 5RT, and the conditioning area was $62.23m^2$. From the experimental results, the cooling COP of the heat pump was 4.13, and the system COP was 3.51, while the CSPF was 3.32. On the other hand, the heating COP of the heat pump was 3.87, and the system COP was 3.39, while the HSPF was 3.39. Also, in-situ cooling COP and capacity were 93.7% and 96.4% compared with the EWT certification data, respectively, and that of heating were 98.3% and 95.7%, respectively.

하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석 (Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE))

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권3호
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

지열원 열펌프의 냉.난방 성능 평가 (Cooling and Heating Performance Evaluation of a Ground Source Heat Pump)

  • 손병후;조정식;신현준;안형준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2117-2122
    • /
    • 2004
  • The main objective of the present study is to investigate the performance characteristics of a ground source heat pump (GSHP) system with a 130 m vertical 60.5 mm nominal diameter U-bend ground heat exchanger. In order to evaluate the performance analysis, the GSHP system connected to a test room with 90 $m^2$ floor area in the Korea Institute of Construction Technology ($37^{\circ}39'$ N, $126^{\circ}48'$ E) was designed and constructed. This GSHP system mainly consisted of ground heat exchanger, indoor heat pump and measuring devices. The cooling and heating loads of the test room were 5.5 and 7.2 kW at design conditions, respectively. The experimental results were obtained from July to January in cooling and heating season of $2003{\sim}2004$. The cooling and heating performance coefficients of the system were determined from the experimental results. The average cooling and heating COPs for the system were obtained to be 4.82 and 3.02, respectively. The temperature variations in ground and the ground heat exchanger surface at different depths were also measured.

  • PDF