본 논문에서는 2020년 기준 단백질 서열을 이용한 기능과 구조 예측 분야에서 가장 많이 사용되고 있는 딥러닝 모델인 CNN과 LSTM/GRU 모델을 동일한 조건 하에 비교 평가한 연구를 토대로 새로운 효소 기능 예측 모델인 PSCREM을 설계하였다. CNN 합성곱 시 누락되는 세부 패턴을 보존하기 위하여 서열 진화정보를 이용하였으며 중첩 RNN을 통해 기능적으로 중요한 의미를 가지는 아미노산 간의 관계 정보를 추출하고 특징 맵 제작에 참조하였다. 사용된 RNN 계열의 알고리즘은 LSTM과 GRU로 보통 stacked RNN 기법으로 100 units 이상 2~3회 쌓는 것이 일반적이나 본 논문에서는 10, 20 unit으로 구성한 뒤 중첩시켜서 특징 맵 제작에 사용하였다. 모델에 들어가는 데이터는 단백질 서열 데이터로 PSSM profile로 가공한 뒤 사용되었다. 실험 결과 효소 번호 첫 번째 자리를 예측하는 문제에 대해 86.4%의 정확도를 나타냄을 입증하였고, 효소 번호 3번째 자리까지 예측 정확도 84.4%의 성능을 내는 것을 확인하였다. PSCREM은 Overlapped RNN을 통해 단백질 기능에 관련된 고유 패턴을 더 잘 파악하며 Overlapped RNN은 단백질 기능 및 구조 예측 추출 분야에 새로운 방법론으로서 제안된다.
The 9th International Conference on Construction Engineering and Project Management
/
pp.814-822
/
2022
The deployment of sensors for Structural Health Monitoring requires a complicated network arrangement, ground truthing, and calibration for validating sensor performance periodically. Any conventional sensor on a structural element is also subjected to static and dynamic vertical loadings in conjunction with other environmental factors, such as brightness, noise, temperature, and humidity. A structural model with strain gauges was built and tested to get realistic sensory information. This paper investigates different deep learning architectures and algorithms, including unsupervised, autoencoder, and supervised methods, to benchmark blind drift calibration methods using deep learning. It involves a fully connected neural network (FCNN), a long short-term memory (LSTM), and a gated recurrent unit (GRU) to address the blind drift calibration problem (i.e., performing calibrations of installed sensors when ground truth is not available). The results show that the supervised methods perform much better than unsupervised methods, such as an autoencoder, when ground truths are available. Furthermore, taking advantage of time-series information, the GRU model generates the most precise predictions to remove the drift overall.
본 논문에서는 딥러닝 기반의 순환신경망을 이용하여 선박 연료유 예측을 시도하였다. 해운업에서는 선박 운항비에서 연료유가 차지하는 비중이 가장 크고 가격 변동성도 크기 때문에, 해운 기업은 합리적이고 과학저인 방법으로 연료유를 예측하여 시장경쟁력을 확보할 수 있다. 본 논문에서는 순환신경망 모델 3가지(RNN, LSTM, GRU)를 이용하여 싱가폴의 HSFO 380CST 벙커유 가격을 단기 예측하였다. 예측결과, 첫째, 선박 연료유 단기적 예측을 위해서는 장기 메모리를 사용하는 LSTM, GRU보다는 일반적인 RNN 모델의 성능이 우수한 것으로 분석되어, 장기적 정보의 예측 기여가 낮은 것으로 분석되었다. 둘째, 계량경제학 모델을 사용한 선행연구와 비교하여 순환신경망 모델의 예측성능이 우수한 것으로 분석되어 연료유가의 비선형적 특성을 고려한 순환신경망 모델을 통한 예측 연구의 필요성을 확인하였다. 연구의 결과는 선박 연료유의 단기 예측을 통하여 해운기업의 선박 연료유 수급 결정과 같은 의사결정에 도움이 될 수 있을 것으로 기대된다.
Park, Cheoneum;Lee, Changki;Hong, Lynn;Hwang, Yigyu;Yoo, Taejoon;Jang, Jaeyong;Hong, Yunki;Bae, Kyung-Hoon;Kim, Hyun-Ki
ETRI Journal
/
제41권3호
/
pp.371-382
/
2019
Machine reading comprehension is the task of understanding a given context and finding the correct response in that context. A simple recurrent unit (SRU) is a model that solves the vanishing gradient problem in a recurrent neural network (RNN) using a neural gate, such as a gated recurrent unit (GRU) and long short-term memory (LSTM); moreover, it removes the previous hidden state from the input gate to improve the speed compared to GRU and LSTM. A self-matching network, used in R-Net, can have a similar effect to coreference resolution because the self-matching network can obtain context information of a similar meaning by calculating the attention weight for its own RNN sequence. In this paper, we construct a dataset for Korean machine reading comprehension and propose an $S^2-Net$ model that adds a self-matching layer to an encoder RNN using multilayer SRU. The experimental results show that the proposed $S^2-Net$ model has performance of single 68.82% EM and 81.25% F1, and ensemble 70.81% EM, 82.48% F1 in the Korean machine reading comprehension test dataset, and has single 71.30% EM and 80.37% F1 and ensemble 73.29% EM and 81.54% F1 performance in the SQuAD dev dataset.
정보추출은 문헌 내에 존재하는 개체명을 인식함과 동시에 이들 간의 의미적 관계까지도 식별하여 최종적으로 문헌 내에 포함된 의미적 트리플을 자동으로 추출하여 활용할 수 있으므로 문헌에 대한 심층적인 분석과 이해에 많은 도움을 줄 수 있다. 그러나 지금까지 대부분의 정보추출에 대한 연구는 개체명 인식과 관계추출이 개별 연구로 각각 분리되어 진행되었으며, 그 결과 입력 문헌에 대한 정보추출의 최종 출력인 의미적 트리플 추출 성능에 대한 객관적이고 정확한 평가가 제대로 이루어지지 않았다. 이에 본 논문에서는 진료 기록 문헌에 나타나는 개체명과 그들 간의 관계를 트리플 형태로 직접 추출할 수 있는 종단형 정보추출의 2가지 모델인 파이프라인 및 결합형 모델을 구축하는 구체적인 방법론을 제시하고 성능 비교 실험을 진행하였다. 우선 파이프라인 모델은 양방향 GRU-CRFs를 활용한 개체명 인식 모듈과 다중 인코딩 기반 관계추출 모듈로 구현되었고, 결합형 모델을 위해서는 다중 헤드 레이블링 기반의 양방향 GRU-CRFs이 적용되었다. 두 가지 시스템을 바탕으로 진료기록 문헌 내의 개체명과 관계를 모두 태깅하여 구축된 i2b2/VA 2010 데이터셋을 활용한 비교 실험에서 파이프라인 모델의 성능이 5.5%(F-measure) 더 높게 나타났다. 추가적으로, 대규모 신경망 언어모델과 수작업으로 구축된 자질 정보를 활용한 최고 수준의 기존 시스템과의 비교 실험을 통해, 본 논문에서 구현한 종단형 모델의 객관적인 성능 수준을 파악할 수 있었다.
본 논문에서는 SNS에 게시된 글의 내용을 통해 사용자의 우울함을 검출하는 기계학습 기반 감성 분석 시스템을 제안한다. 게시한 글의 작성자가 기분을 파악하는 시스템을 구현하기 위해 먼저 감정 사전에서 우울한 감정의 단어와 그렇지 않은 감정과 관련된 단어를 목록화하였다. 그 후, SNS를 대표하는 서비스 중 하나인 트위터의 텍스트 자료에서 검색 키워드를 선정하고 크롤링을 시행하여 우울한 감정을 띤 문장 1297개와 그렇지 않은 문장 1032개로 이뤄진 학습 데이터셋을 구축하였다. 마지막으로 텍스트 기반 우울감 검출 목적에 가정 적합한 기계학습 모델을 찾기 위해 수집한 데이터셋을 바탕으로 순환신경망, 장단기메모리, 그리고 게이트 순환 유닛을 비교 평가하였고, 그 결과 GRU 모델이 다른 모델들보다 2~4%가량의 높은 92.2%의 정확도를 보임을 확인하였다. 이 연구 결과는 SNS상의 게시글을 토대로 사용자의 우울증을 예방하거나 치료를 유도하는 데 활용될 수 있을 것이다.
온라인 저지 시스템 지원하기 위한 표절 검사, 소스코드 분석 및 자동화된 튜터링 기법이 연구되고 있다. 최근 딥러닝 기술 기반의 소스코드 유사도 분석을 통한 표절 감지 기술들이 제안되었으나, 자동화된 튜터링을 지원하기 위한 딥러닝 기반의 연구는 미흡한 실정이다. 따라서 본 논문에서는 자바 바이트코드와 문제정보를 결합하여 학습하고, 학습자가 온라인 저지 시스템에 코드를 제출하기 전에 pass/fail 여부를 예측할 수 있는 GRU 기반의 Input / Output side FiLM 모델을 제안한다. 또한 온라인 저지에 수집되는 데이터의 특성상 비대칭이 발생하기 때문에 밸런스 샘플링 기법을 적용하여 데이터를 균등하게 분포시켜 두 상황을 제안한 모델로 학습하였다. 실험 결과 Input side FiLM 모델이 가장 높은 73.63%의 성능을 보였다. 이를 기반으로 학습자들이 온라인 저지의 평가를 받기 전에 pass/faill 여부를 확인하여 소스코드 개선에 대한 피드백 기능에 적용 가능할 것으로 예상된다.
최근 음성 감정 인식(Speech Emotion Recognition, SER)분야는 음성 특징과 모델링을 활용하여 인식률을 개선하기 위한 많은 연구가 진행되고 있다. 기존 음성 감정 인식의 정확도를 높이기 위한 모델링 연구 이외에도 음성 특징을 다양한 방법으로 활용하는 연구들이 진행되고 있다. 본 논문에서는 음성 감정이 시간 흐름과 연관이 있음을 착안하여 시계열 방식으로 음성파일을 시간 구간별로 분리한다. 파일 분리 이후, 음성 특징인 Mel, Chroma, zero-crossing rate (ZCR), root mean square (RMS), mel-frequency cepastral coefficients (MFCC)를 추출하여서 순차적 데이터 처리에 사용하는 순환형 신경망 모델에 적용하여 음성 데이터에서 감정을 분류하는 모델을 제안한다. 제안한 모델은 librosa를 사용하여 음성 특징들을 모든 파일에서 추출하여, 신경망 모델에 적용하였다. 시뮬레이션은 영어 데이터 셋인 Interactive Emotional Dyadic Motion Capture (IEMOCAP)을 이용하여 recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit(GRU)의 모델들의 성능을 비교 및 분석하였다.
심전도(electrocardiogram, ECG)는 심박동의 속도와 규칙성, 심실의 크기와 위치, 심장 손상 여부를 측정하는 데 사용되며, 모든 심장질환의 원인을 찾아낼 수 있다. ECG-KIT를 이용하여 획득한 ECG 신호는 ECG 신호에 잡음을 포함하기 때문에 딥러닝에 적용하기 위해서는 ECG 신호에서 잡음을 제거해야만 한다. 본 논문에서는, ECG 신호에 포함된 잡음은 Digital FIR 해밍 창함수를 이용한 저역통과 필터를 사용하여 제거하였다. LSTM의 딥러닝 모델을 사용하여 3가지 활성화 함수인 sigmoid(), ReLU(), tanh() 에 대한 성능 평가를 비교했을 때, 오차가 가장 작은 활성화 함수는 tanh() 함수 임을 확인하였고, batch size가 작은 경우가 큰 경우보다 시간이 많이 소요되었다. 또한 GRU 모델의 성능 평가의 결과가 LSTM 모델보다 우수한 것을 확인하였다.
본 논문은 물고기 양식 전문가의 먹이 배급을 모방하는 신경망 모델인 PredFeed Net을 제안한다. PredFeed Net은 기존의 먹이 배급 자동화 시스템과 달리, 전문가의 먹이 배급 패턴을 학습하는 방식으로 먹이 배급량을 예측한다. 이는 실제 수조에서 환경에 따른 먹이 배급 변수를 바꾸며 실험할 필요 없이, 기존의 환경 데이터와 먹이 배급 전문가의 먹이 배급 기록만으로 학습이 가능하다는 이점이 있다. 학습이 완료된 PredFeed Net은 현재 환경이나 어류의 상태를 통해 다음 먹이 배급량을 예측한다. 먹이 배급량 예측은 먹이 배급 자동화에 필요한 요소이며, 먹이 배급 자동화는 스마트 양식업이나 아쿠아포닉스 시스템 같은 최신 양식어업에 발전에 기여한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.