• Title/Summary/Keyword: GRU 모델

Search Result 103, Processing Time 0.024 seconds

Real-Time Streaming Traffic Prediction Using Deep Learning Models Based on Recurrent Neural Network (순환 신경망 기반 딥러닝 모델들을 활용한 실시간 스트리밍 트래픽 예측)

  • Jinho, Kim;Donghyeok, An
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, the demand and traffic volume for various multimedia contents are rapidly increasing through real-time streaming platforms. In this paper, we predict real-time streaming traffic to improve the quality of service (QoS). Statistical models have been used to predict network traffic. However, since real-time streaming traffic changes dynamically, we used recurrent neural network-based deep learning models rather than a statistical model. Therefore, after the collection and preprocessing for real-time streaming data, we exploit vanilla RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU models to predict real-time streaming traffic. In evaluation, the training time and accuracy of each model are measured and compared.

Bidirectional GRU-GRU CRF based Citation Metadata Recognition (Bidirectional GRU-GRU CRF 기반 참고문헌 메타데이터 인식)

  • Kim, Seon-wu;Ji, Seon-young;Seol, Jae-wook;Jeong, Hee-seok;Choi, Sung-pil
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.461-464
    • /
    • 2018
  • 최근 학술문헌이 급격하게 증가함에 따라, 학술문헌간의 연결성 및 메타데이터 추출 등의 핵심 자원으로서 활용할 수 있는 참고문헌에 대한 활용 연구가 진행되고 있다. 본 연구에서는 국내 학술지의 참고문헌이 가진 각 메타데이터를 자동적으로 인식하여 추출할 수 있는 참고문헌 메타데이터 인식에 대하여, 연속적 레이블링 방법론을 기반으로 접근한다. 심층학습 기술 중 연속적 레이블링에 우수한 성능을 보이고 있는 Bidirectional GRU-GRU CRF 모델을 기반으로 참고문헌 메타데이터 인식에 적용하였으며, 2010년 이후의 10종의 학술지내의 144,786건의 논문을 활용하여 추출한 169,668건의 참고문헌을 가공하여 실험하였다. 실험 결과, 실험집합에 대하여 F1 점수 97.21%의 우수한 성능을 보였다.

  • PDF

Comparison of Deep Learning Models Using Protein Sequence Data (단백질 기능 예측 모델의 주요 딥러닝 모델 비교 실험)

  • Lee, Jeung Min;Lee, Hyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.245-254
    • /
    • 2022
  • Proteins are the basic unit of all life activities, and understanding them is essential for studying life phenomena. Since the emergence of the machine learning methodology using artificial neural networks, many researchers have tried to predict the function of proteins using only protein sequences. Many combinations of deep learning models have been reported to academia, but the methods are different and there is no formal methodology, and they are tailored to different data, so there has never been a direct comparative analysis of which algorithms are more suitable for handling protein data. In this paper, the single model performance of each algorithm was compared and evaluated based on accuracy and speed by applying the same data to CNN, LSTM, and GRU models, which are the most frequently used representative algorithms in the convergence research field of predicting protein functions, and the final evaluation scale is presented as Micro Precision, Recall, and F1-score. The combined models CNN-LSTM and CNN-GRU models also were evaluated in the same way. Through this study, it was confirmed that the performance of LSTM as a single model is good in simple classification problems, overlapping CNN was suitable as a single model in complex classification problems, and the CNN-LSTM was relatively better as a combination model.

Intrusion Detection Method Using Unsupervised Learning-Based Embedding and Autoencoder (비지도 학습 기반의 임베딩과 오토인코더를 사용한 침입 탐지 방법)

  • Junwoo Lee;Kangseok Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.355-364
    • /
    • 2023
  • As advanced cyber threats continue to increase in recent years, it is difficult to detect new types of cyber attacks with existing pattern or signature-based intrusion detection method. Therefore, research on anomaly detection methods using data learning-based artificial intelligence technology is increasing. In addition, supervised learning-based anomaly detection methods are difficult to use in real environments because they require sufficient labeled data for learning. Research on an unsupervised learning-based method that learns from normal data and detects an anomaly by finding a pattern in the data itself has been actively conducted. Therefore, this study aims to extract a latent vector that preserves useful sequence information from sequence log data and develop an anomaly detection learning model using the extracted latent vector. Word2Vec was used to create a dense vector representation corresponding to the characteristics of each sequence, and an unsupervised autoencoder was developed to extract latent vectors from sequence data expressed as dense vectors. The developed autoencoder model is a recurrent neural network GRU (Gated Recurrent Unit) based denoising autoencoder suitable for sequence data, a one-dimensional convolutional neural network-based autoencoder to solve the limited short-term memory problem that GRU can have, and an autoencoder combining GRU and one-dimensional convolution was used. The data used in the experiment is time-series-based NGIDS (Next Generation IDS Dataset) data, and as a result of the experiment, an autoencoder that combines GRU and one-dimensional convolution is better than a model using a GRU-based autoencoder or a one-dimensional convolution-based autoencoder. It was efficient in terms of learning time for extracting useful latent patterns from training data, and showed stable performance with smaller fluctuations in anomaly detection performance.

Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data (라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정)

  • Meanne P. Andes;Mi-young Roh;Mi Young Lim;Gyeong-Lee Choi;Jung Su Jung;Dongpil Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.384-395
    • /
    • 2023
  • Since transpiration plays a key role in optimal irrigation management, knowledge of the irrigation demand of crops like tomatoes, which are highly susceptible to water stress, is necessary. One way to determine irrigation demand is to measure transpiration, which is affected by environmental factor or growth stage. This study aimed to estimate the transpiration amount of tomatoes and find a suitable model using mathematical and deep learning models using minute-by-minute data. Pearson correlation revealed that observed environmental variables significantly correlate with crop transpiration. Inside air temperature and outside radiation positively correlated with transpiration, while humidity showed a negative correlation. Multiple Linear Regression (MLR), Polynomial Regression model, Artificial Neural Network (ANN), Long short-term Memory (LSTM), and Gated Recurrent Unit (GRU) models were built and compared their accuracies. All models showed potential in estimating transpiration with R2 values ranging from 0.770 to 0.948 and RMSE of 0.495 mm/min to 1.038 mm/min in the test dataset. Deep learning models outperformed the mathematical models; the GRU demonstrated the best performance in the test data with 0.948 R2 and 0.495 mm/min RMSE. The LSTM and ANN closely followed with R2 values of 0.946 and 0.944, respectively, and RMSE of 0.504 m/min and 0.511, respectively. The GRU model exhibited superior performance in short-term forecasts while LSTM for long-term but requires verification using a large dataset. Compared to the FAO56 Penman-Monteith (PM) equation, PM has a lower RMSE of 0.598 mm/min than MLR and Polynomial models degrees 2 and 3 but performed least among all models in capturing variability in transpiration. Therefore, this study recommended GRU and LSTM models for short-term estimation of tomato transpiration in greenhouses.

A Fuzzy-AHP-based Movie Recommendation System using the GRU Language Model (GRU 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.319-325
    • /
    • 2021
  • With the advancement of wireless technology and the rapid growth of the infrastructure of mobile communication technology, systems applying AI-based platforms are drawing attention from users. In particular, the system that understands users' tastes and interests and recommends preferred items is applied to advanced e-commerce customized services and smart homes. However, there is a problem that these recommendation systems are difficult to reflect in real time the preferences of various users for tastes and interests. In this research, we propose a Fuzzy-AHP-based movies recommendation system using the Gated Recurrent Unit (GRU) language model to address a problem. In this system, we apply Fuzzy-AHP to reflect users' tastes or interests in real time. We also apply GRU language model-based models to analyze the public interest and the content of the film to recommend movies similar to the user's preferred factors. To validate the performance of this recommendation system, we measured the suitability of the learning model using scraping data used in the learning module, and measured the rate of learning performance by comparing the Long Short-Term Memory (LSTM) language model with the learning time per epoch. The results show that the average cross-validation index of the learning model in this work is suitable at 94.8% and that the learning performance rate outperforms the LSTM language model.

Short-term Power Consumption Forecasting Based on IoT Power Meter with LSTM and GRU Deep Learning (LSTM과 GRU 딥러닝 IoT 파워미터 기반의 단기 전력사용량 예측)

  • Lee, Seon-Min;Sun, Young-Ghyu;Lee, Jiyoung;Lee, Donggu;Cho, Eun-Il;Park, Dae-Hyun;Kim, Yong-Bum;Sim, Isaac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.79-85
    • /
    • 2019
  • In this paper, we propose a short-term power forecasting method by applying Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network to Internet of Things (IoT) power meter. We analyze performance based on real power consumption data of households. Mean absolute error (MAE), mean absolute percentage error (MAPE), mean percentage error (MPE), mean squared error (MSE), and root mean squared error (RMSE) are used as performance evaluation indexes. The experimental results show that the GRU-based model improves the performance by 4.52% in the MAPE and 5.59% in the MPE compared to the LSTM-based model.

Implementation of CNN-based water level prediction model for river flood prediction (하천 홍수 예측을 위한 CNN 기반의 수위 예측 모델 구현)

  • Cho, Minwoo;Kim, Sujin;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1471-1476
    • /
    • 2021
  • Flood damage can cause floods or tsunamis, which can result in enormous loss of life and property. In this regard, damage can be reduced by making a quick evacuation decision through flood prediction, and many studies are underway in this field to predict floods using time series data. In this paper, we propose a CNN-based time series prediction model. A CNN-based water level prediction model was implemented using the river level and precipitation, and the performance was confirmed by comparing it with the LSTM and GRU models, which are often used for time series prediction. In addition, by checking the performance difference according to the size of the input data, it was possible to find the points to be supplemented, and it was confirmed that better performance than LSTM and GRU could be obtained. Through this, it is thought that it can be utilized as an initial study for flood prediction.

Performance Evaluation for ECG Signal Prediction Using Digital IIR Filter and Deep Learning (디지털 IIR Filter와 Deep Learning을 이용한 ECG 신호 예측을 위한 성능 평가)

  • Uei-Joong Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.611-616
    • /
    • 2023
  • ECG(electrocardiogram) is a test used to measure the rate and regularity of heartbeats, as well as the size and position of the chambers, the presence of any damage to the heart, and the cause of all heart diseases can be found. Because the ECG signal obtained using the ECG-KIT includes noise in the ECG signal, noise must be removed from the ECG signal to apply to the deep learning. In this paper, the noise of the ECG signal was removed using the digital IIR Butterworth low-pass filter. When the performance evaluation of the three activation functions, sigmoid(), ReLU(), and tanh() functions, was compared using the deep learning model of LSTM, it was confirmed that the activation function with the smallest error was the tanh() function. Also, When the performance evaluation and elapsed time were compared for LSTM and GRU models, it was confirmed that the GRU model was superior to the LSTM model.

Prediction of Sea Water Temperature by Using Deep Learning Technology Based on Ocean Buoy (해양관측부위 자료 기반 딥러닝 기술을 활용한 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Byeon, Seong-Hyeon;Kim, Young-Won
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • Recently, The sea water temperature around Korean Peninsula is steadily increasing. Water temperature changes not only affect the fishing ecosystem, but also are closely related to military operations in the sea. The purpose of this study is to suggest which model is more suitable for the field of water temperature prediction by attempting short-term water temperature prediction through various prediction models based on deep learning technology. The data used for prediction are water temperature data from the East Sea (Goseong, Yangyang, Gangneung, and Yeongdeok) from 2016 to 2020, which were observed through marine observation by the National Fisheries Research Institute. In addition, we use Long Short-Term Memory (LSTM), Bidirectional LSTM, and Gated Recurrent Unit (GRU) techniques that show excellent performance in predicting time series data as models for prediction. While the previous study used only LSTM, in this study, the prediction accuracy of each technique and the performance time were compared by applying various techniques in addition to LSTM. As a result of the study, it was confirmed that Bidirectional LSTM and GRU techniques had the least error between actual and predicted values at all observation points based on 1 hour prediction, and GRU was the fastest in learning time. Through this, it was confirmed that a method using Bidirectional LSTM was required for water temperature prediction to improve accuracy while reducing prediction errors. In areas that require real-time prediction in addition to accuracy, such as anti-submarine operations, it is judged that the method of using the GRU technique will be more appropriate.