• Title/Summary/Keyword: GRAS

Search Result 98, Processing Time 0.023 seconds

Grid-Based KlneMatic Wave STOrmRunoff Model (KIMSTORM)(I) - Theory and Model - (격자기반의 운동파 강우유출모형 개발(I) - 이론 및 모형 -)

  • Kim, Seong-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.303-308
    • /
    • 1998
  • A grid-based KInematic were STOrm Runoff Model (KIMSTORM) with predicts temporal and spatial distributions of saturalted orerland flow, subsurface flow and stream flow in a watershed was developed. The model adopts the single overland flowpath algorithm and simulates surface and/or subsurface water depth at each grid element by using grid-based water balance of hydrologic components. The model which is programmed by C-language uses ASCII-formatted map data supported by the irregular gridded map of the GRASS(Geographic Resources Analysis Support System) GIS and generates the spatial distribution maps of discharge, flow depth and soil moisture within the watershed.

  • PDF

Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation

  • Choi, Ji Won;Lim, Jun
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.524-529
    • /
    • 2016
  • Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.

Characterization of Alpha-Amylase from Aspergillus niger Aggregate F Isolated from a Fermented Cassava Gatot Grown in Potato Peel Waste Medium

  • Angelia, Cindy;Sanjaya, Astia;Aida, Aida;Tanudjaja, Ellen;Victor, Hans;Cahyani, Antari Daru;Tan, Tjie Jan;Pinontoan, Reinhard
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.364-371
    • /
    • 2019
  • The use of GRAS microorganisms isolated from fermented foods during amylase production using an economical food-waste medium provides more opportunities to produce amylase with a wider range of applications. Hence, this study aimed to isolate a good amylase-producing fungi from the traditional Indonesian fermented cassava, gatot, and to identify the amylase-producing capability of the isolate in a potato peel waste (PPW) medium. Black-colored fungi isolated from gatot was morphologically identified and the amylase produced was characterized using SDS-PAGE and Native PAGE. The isolate was then grown on PPW medium, and the amylase produced was further characterized. Morphological identification and enzyme characterization revealed that the Aspergillus niger aggregate F isolated from gatot secreted an active extracellular ${\alpha}$-amylase with an optimum pH of 5-6. In conclusion, Aspergillus niger aggregate F isolated from gatot can be used to produce ${\alpha}$-amylase using PPW as a medium.

SHORT-ROOT Controls Cell Elongation in the Etiolated Arabidopsis Hypocotyl

  • Dhar, Souvik;Kim, Jinkwon;Yoon, Eun Kyung;Jang, Sejeong;Ko, Kangseok;Lim, Jun
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.243-256
    • /
    • 2022
  • Transcriptional regulation, a core component of gene regulatory networks, plays a key role in controlling individual organism's growth and development. To understand how plants modulate cellular processes for growth and development, the identification and characterization of gene regulatory networks are of importance. The SHORT-ROOT (SHR) transcription factor is known for its role in cell divisions in Arabidopsis (Arabidopsis thaliana). However, whether SHR is involved in hypocotyl cell elongation remains unknown. Here, we reveal that SHR controls hypocotyl cell elongation via the transcriptional regulation of XTH18, XTH22, and XTH24, which encode cell wall remodeling enzymes called xyloglucan endotransglucosylase/hydrolases (XTHs). Interestingly, SHR activates transcription of the XTH genes, independently of its partner SCARECROW (SCR), which is different from the known mode of action. In addition, overexpression of the XTH genes can promote cell elongation in the etiolated hypocotyl. Moreover, confinement of SHR protein in the stele still induces cell elongation, despite the aberrant organization in the hypocotyl ground tissue. Therefore, it is likely that SHR-mediated growth is uncoupled from SHR-mediated radial patterning in the etiolated hypocotyl. Our findings also suggest that intertissue communication between stele and endodermis plays a role in coordinating hypocotyl cell elongation of the Arabidopsis seedling. Taken together, our study identifies SHR as a new crucial regulator that is necessary for cell elongation in the etiolated hypocotyl.

Isolation and Identification of a Bacillus sp. producing ${\alpha}$-glucosidase Inhibitor 1-deoxynojirimycin (알파글루코시다아제 저해제 1-deoxynojirimycin을 생산하는 Bacillus 균주의 분리 및 동정)

  • Kim, Hyun-Su;Lee, Jae-Yeon;Hwang, Kyo-Yeol;Cho, Yong-Seok;Park, Young-Shik;Kang, Kyung-Don;Seong, Su-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Thirty Streptomyces sp. and 200 Bacillus sp. isolated from Korean soils and traditional foods were screened for their abilities to inhibit ${\alpha}$-glucosidase and produce 1-deoxynojirimycin (DNJ). This screening identified a Bacillus sp. bacterium that strongly inhibited ${\alpha}$-glucosidase and produced high levels of DNJ from Chungkookjang, a Korean traditional food. The bacterium was characterized in terms of its biochemical and molecular biological properties such as sugar utilization, cellular quinone composition, cell wall fatty acid composition, and 16S rDNA sequence. In addition, scanning electron microscopy was used to visualize the morphology of the bacterium. These analyses identified the bacterium as B. subtilis, a bacterium with Generally Recognized as Safe (GRAS) status. The selected strain was named B. subtilis MORI.

Photosynthesis and Respiration of Forage Plants under Saline Stress (Saline Stress 하에서의 사료작물의 광합성 및 호흡)

  • 김충수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.4
    • /
    • pp.362-369
    • /
    • 1990
  • In order to determine the mechanism of saline stress, forage plants were irrigated with sea water. Saline stress was investigated on photosynthesis, root respiration, evapotranspiration and visual symptoms. All crops showed increased relative evapotranspiration and relative photosynthesis under low temperature (11-16$^{\circ}C$) rather than high temperature (22-24$^{\circ}C$). The correlation coefficients calculated for each crop between relative evapotranspiration and root respiration were 0.996$\^$**/ for orchard grass, 0.828$\^$*/ for alfalfa and 0.963$\^$**/ for white clover. No significant correlation coefficient between relative evapotranspiration and root repiration was found for the tall fescue. The effects of OED spray on the evapotranspiration and root respiration of crops in the sea watered pots were low compared with those in the fresh watered pots. When OED was sprayed and zeolite was used, the evapotranspiration and root respiration were low compared with check pots and sand pots. The root damage due to sea water treatment was characterized by brown colored root cortex in orchard grass and tall fescue, and water penetration of root cortex in alfalfa and white clover.

  • PDF

Screening and Characterization of Microorganisms with Fibrinolytic Activity from Fermented Foods

  • Yoon, Seon-Joo;Yu, Myeong-Ae;Sim, Gwan-Sub;Kwon, Seung-Taek;Hwang, Jae-Kwan;Shin, Jung-Kue;Yeo, In-Hyun;Pyun, Yu-Rang
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.649-656
    • /
    • 2002
  • Fibrinolytic microorganisms were screened from 42 samples of Korean fermented food (7 kinds of Chungook-jang, 14 kinds of commercial Doen-Jang, 5 kinds of home-made Doen-jang, and 16 kinds of Jeot-gal), 15 samples of Japanese fermented food (5 kinds of home-made soybean paste, and 10 kinds of Natto), and 19 samples of Indonesian fermented food (Tempe) as well as starters of Meju (500 microflora from Korea, and 22 from China). Initially, 11 isolates with strong fibrinolytic activity were selected for further characterization. The fibrinolytic activity of the 11 isolates ranged from 89 to 199% of standard plasmin. Four strains, M5l from Korean fermented food (Meju), I 1-1, I 1-4, and I 5-1 from Indonesian fermented food (Tempe), were chosen based on the degree of activity and reproducibility, and identified as Staphylococcus sciuri, Citrobacter or Enterobacter, Enterococcus faecalis, and Bacillus subtilis, respectively. The first two isolates are pathogenic stains while the latter two are considered as GRAS (Generally Recognized As Safe). Fibrinolytic activity of E. faecalis, characterized and designated as BRCA-5, reached a maximum, when the producer was cultivated in Ml7 broth supplemented with 1.0% glucose for 5 h at 37$^{\circ}C$ with shaking at 180 rpm. Compared to commercial fibrinolytic enzymes, the cell-free culture supernatant of 5. faecaiis BRCA-5 showed stronger activity than plasmin and streptokinase, but similar degree of specific activity as nattokinase and urokinase, aud it also demonstrated anticoagulant and antiplatelet activity ex vivo. These features of E. faecalis make it an attractive agent as a biomaterial for health-promoting foods.

Development of Host-Vector Systems for Lactic Acid Bacteria (유산균의 Host-Vector System 개발)

  • 윤성식;김창민
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • Lactic acid bacteria (LAB) are widely used for various food fermentation. With the recent advances in modern biotechnology, a variety of bio-products with the high economic values have been produced using microorganisms. For molecular cloning and expression studies on the gene of interest, E. coli has been widely used mainly because vector systems are fully developed. Most plasmid vectors currently used for E, coli carry antibiotic-resistant markers. As it is generally believed that the antibiotic resistance markers are potentially transferred to other bacteria, application of the plasmid vectors carrying antibiotic resistance genes as selection markers should be avoided, especially for human consump-tion. By contrast, as LAB have some desirable traits such that the they are GRAS(generally recognized as safe), able to secrete gene products out of cell, and their low protease activities, they are regarded as an ideal organism for the genetic manipulation, including cloning and expression of homologous and heterologous genes. However, the vec-tor systems established for LAB are stil insufficient to over-produce gene products, stably, limiting the use of these organisms for industrial applications. For a past decade, the two popular plasmid vectors, pAM$\beta$1 of Streptococcus faecalis and pGK12 theB. subtilis-E. coli shuttle vector derived from pWV01 of Lactococcus lactis ssp. cremoris wg 2, were most widely used to construct efficient chimeric vectors to be stably maintained in many industrial strains of LAB. Currently, non-antibiotic markers such as nisin resistance($Nis^{r}$ ) are explored for selecting recombi-nant clone. In addition, a gene encoding S-layer protein, slp/A, on bacterial cell wall was successfully recombined with the proper LAB vectors LAB vectors for excretion of the heterologous gene product from LAB Many food-grade host vec-tor systems were successfully developed, which allowed stable integration of multiple plasmid copies in the vec-mosome of LAB. More recently, an integration vector system based on the site-specific integration apparatus of temperate lactococcal bacteriophage, containing the integrase gene(int) and phage attachment site(attP), was pub-lished. In conclusion, when various vector system, which are maintain stably and expressed strongly in LAB, are developed, lost of such food products as enzymes, pharmaceuticals, bioactive food ingredients for human consump-tion would be produced at a full scale in LAB.

  • PDF

Heme Derived from Corynebacterium glutamicum: A Potential Iron Additive for Swine and an Electron Carrier Additive for Lactic Acid Bacterial Culture

  • Choi, Su-In;Park, Jihoon;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.500-506
    • /
    • 2017
  • To investigate the potential applications of bacterial heme, aminolevulinic acid synthase (HemA) was expressed in a Corynebacterium glutamicum HA strain that had been adaptively evolved against oxidative stress. The red pigment from the constructed strain was extracted and it exhibited the typical heme absorbance at 408 nm from the spectrum. To investigate the potential of this strain as an iron additive for swine, a prototype feed additive was manufactured in pilot scale by culturing the strain in a 5 ton fermenter followed by spray-drying the biomass with flour as an excipient (biomass: flour = 1:10 (w/w)). The 10% prototype additive along with regular feed was supplied to a pig, resulting in a 1.1 kg greater increase in weight gain with no diarrhea in 3 weeks as compared with that in a control pig that was fed an additive containing only flour. To verify if C. glutamicum-synthesized heme is a potential electron carrier, lactic acid bacteria were cultured under aerobic conditions with the extracted heme. The biomasses of the aerobically grown Lactococcus lactis, Lactobacillus rhamosus, and Lactobacillus casei were 97%, 15%, and 4% greater, respectively, than those under fermentative growth conditions. As a potential preservative, cultures of the four strains of lactic acid bacteria were stored at $4^{\circ}C$ with the extracted heme and living lactic acid bacterial cells were counted. There were more L. lactis and L. plantarum live cells when stored with heme, whereas L. rhamosus and L. casei showed no significant differences in live-cell numbers. The potential uses of the heme from C. glutamicum are further discussed.

Nitrogen Fixation Screening and Plant Growth Assessment for Urban Greening (도시 녹화를 위한 질소고정 균 선별 및 식물 생장 평가)

  • Jeong, Sun Hwan;Lee, Sang Seob
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.154-161
    • /
    • 2018
  • Currently, urban greening projects and research are attracting attention as a way to mitigate urban heat island phenomenon. In this study, nitrogen fixative bacteria were isolated and their effects on plant growth were confirmed. First, enrichment was performed in a nitrogen-free medium to isolate the nitrogen-fixing bacteria, and the colony showing high growth in a medium with limited nitrogen source was isolated and purified. Separated bacterial isolates were reduced by more than 90% acetylene by ARA and indirectly confirmed the activity of nitrogenase by ethylene production. Cedecea sp. MK7 and Enterobacter sp. Y8 with confirmed reproducibility were selected as nitrogen fixative bacteria. Nitrogen fixing bacteria were applied to the growth of perennial rye grass, and it was found that the dry weight increased to 34.80 mg (186.60%) compared with the control with 18.65 mg dry weight. After plant growth, microbial community analysis of soil applied by bacteria showed similarity to the control group. Therefore, in this study, it is expected that the efficiency will be increased if plant growth is promoted by using nitrogen fixing bacteria in urban greenery system.