본 논문에서는 FMCW(Frequency Modulated Continuous Wave) SAR(Synthetic Aperture Radar) 기반 실시간 영상 형성을 위해 RDA(Range Doppler Algorithm)의 GPU 가속 커널을 개발하였다. Host와 GPU device 사이의 데이터 전송 시간을 최소화하기 위해 pinned 메모리를 사용하였고, 데이터의 전송 횟수를 최소화하기 위해 모든 RDA 연산을 GPU에서 수행하도록 커널을 구성하였다. FMCW 드론 SAR 실험을 통해 데이터셋를 획득하였고, intel i7-9700K CPU, 32GB RAM과 Nvidia RTX 3090 GPU 환경에서 GPU의 가속 효과를 측정하였다. Host-device간 데이터 전송 시간을 포함했을 경우 CPU 대비 최대 3.41배 가속된 것으로 측정되었고, 데이터 전송 시간을 포함하지 않고 연산의 가속 효과만을 측정했을 때, 최대 156배 가속 가능함을 확인할 수 있었다.
최근 임베디드 시스템에서 사용되는 데이터의 크기가 증가함에 따라, 대용량의 데이터를 안전하게 수신하기 위한 ECC (Error Correction Code) 복호화 연산의 필요성이 강조되고 있다. 본 논문에서는 GPU가 내장된 임베디드 시스템에서 해밍 코드를 사용하여 ECC 복호화를 할 때, 신드롬 벡터를 계산하는 연산의 수행을 가속할 방법을 제안한다. 제안하는 가속화 방법은, 복호화 연산의 행렬-벡터 곱셈이 희소 행렬을 나타내는 자료 구조 중 하나인 CSR (Compressed Sparse Row) 형식을 사용하고, GPU의 CUDA 커널에서 병렬적으로 수행되도록 한다. 본 논문에서는 GPU가 내장된 실제 임베디드 보드를 사용하여 제안하는 방법을 검증하였고, 결과는 GPU 기반으로 가속된 ECC 복호화 연산이 CPU만을 사용한 경우에 비하여 수행 시간이 감소하는 것을 보여준다.
Time of difference of arrival (TDOA) method using passive sonar sensor array has normally been used to estimate the location of a concealed moving target in underwater environment. Particle filter has been introduced for effective target estimation for non-Gaussian and nonlinear systems. In this paper, we propose a GPU-based acceleration of target position estimation using particle filter and propose efficient embedded system and software architecture. For the TDOA measurement from the passive sonar sensor, we use the generalized cross correlation phase transform (GCC-PHAT) method to obtain the correlation coefficient of the signal using FFT and we try to accelerate the calculation of GCC-PHAT based TDOA measurements using FFT with GPU CUDA. We also propose parallelization method of the target position estimation algorithm using the GPU CUDA to update the state of each particle for the target position estimation using the measured values. The target estimation algorithm was verified using Matlab and implemented using GPU CUDA. Then, we realized the proposed signal processing acceleration system using NVIDIA Jetson TX1 as the target board to analyze in terms of the execution time. The execution time of the algorithm is reduced by 55% to the CPU standalone-operation on the target board. Experiment results show that the proposed architecture is a feasible solution in terms of high-performance and area-efficient architecture.
본 연구의 목적은 넓은 지역의 고해상도 홍수모의를 위해서 2차원 모형의 GPU (Graphics Processing Unit) 가속 모의기법을 개발하고 이에 대한 효과를 평가하는 것이다. 음해법을 적용하고 있는 정형 사각형 격자 기반의 2차원 모형인 G2D (Grid based 2-Dimensional land surface flood model) 모형에서 CUDA를 이용하여 GPU 가속 모의 기법을 개발하였다. 개발된 기법을 진주시 홍수모의에 적용하였다. 모의 도메인의 공간해상도는 10 m × 10 m이고, 계산되는 격자의 개수는 총 5,090,611개이다. 홍수모의는 2019년 10월 태풍 미탁에 의한 홍수 기간에 대해서 수행하였다. 강우레이더 자료를 생성항으로 적용하였으며, 남강댐 일류문 계측 방류량과 진주시(옥산교) 계측 유량을 경계조건으로 적용하였다. 연구결과 진주시 남강에서의 관측수위를 재현할 수 있는 광역 2차원 홍수 모형을 구축할 수 있었다. 또한 GPU 가속 기법의 적용 결과, CPU (Central Processing Unit)를 이용한 순차계산 및 병렬계산에 비해서 빠른 홍수모의가 가능하였다. 본 연구의 결과는 음해법을 적용하고 있는 2차원 범람모형의 GPU 가속 기법의 개발과 광역 지표면 홍수해석에 대한 연구에 기여할 수 있을 것이다.
This paper proposes an image feature-based real-time RGB-D (Red-Green-Blue Depth) 3D SLAM (Simultaneous Localization and Mapping) system. RGB-D data from Kinect style sensors contain a 2D image and per-pixel depth information. 6-DOF (Degree-of-Freedom) visual odometry is obtained through the 3D-RANSAC (RANdom SAmple Consensus) algorithm with 2D image features and depth data. For speed up extraction of features, parallel computation is performed with GPU acceleration. After a feature manager detects a loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and builds a 3D point cloud based map.
Journal of information and communication convergence engineering
/
제22권2호
/
pp.98-108
/
2024
Scrypt is a password-based key derivation function proposed by Colin Percival in 2009 that has a memory-hard structure. Scrypt has been intentionally designed with a memory-intensive structure to make password cracking using ASICs, GPUs, and similar hardware more difficult. However, in this study, we thoroughly analyzed the operation of Scrypt and proposed strategies to maximize computational parallelism in GPU environments. Through these optimizations, we achieved an outstanding performance improvement of 8284.4% compared with traditional CPU-based Scrypt computations. Moreover, the GPU-optimized implementation presented in this paper outperforms the simple GPU-based Scrypt processing by a significant margin, providing a performance improvement of 204.84% in the RTX3090. These results demonstrate the effectiveness of our proposed approach in harnessing the computational power of GPUs and achieving remarkable performance gains in Scrypt calculations. Our proposed implementation is the first GPU implementation of Scrypt, demonstrating the ability to efficiently crack Scrypt.
Electrocardiogram (ECG) 신호는 심장의 이상을 조기에 진단하기 위한 좋은 지표이다. ECG 신호는 사람마다 기준이 되는 정상 신호의 형태가 다르고, 진단에 많은 데이터가 필요하다. 본 논문에서는 ECG 신호 진단을 효율적으로 가속하기 위한 OpenCL을 기반 FPGA-GPU 혼합 계층 적응형 플랫폼을 제안한다. 플랫폼에서 MIT-BIH 부정맥 신호데이터의 19870개 ECG 신호를 진단한 결과 FPGA 가속기는 진단 시간이 1.15s로 소프트웨어로 실행했을 때보다 89.94% 감소하였고, 전력 소모는 84.0% 감소하였다. GPU 가속기는 실행 시간이 소프트웨어 대비 83.56% 감소한 1.87s였으며, 전력 소모는 62.3% 감소하였다. 제안하는 FPGA-GPU 혼합 플랫폼은 FPGA 가속기보다 진단 속도가 느리지만 GPU를 이용하여 상황에 따라 유연한 알고리즘을 동작할 수 있다.
In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.
광선추적법(ray tracing)은 빛의 반사, 투과 등을 사실적으로 표현할 수 있는 대표적인 전역조명(global illumination) 기술이지만, 복잡한 계산과정으로 인해 실시간 활용에는 많은 제약이 존재한다. 이런 문제를 해결하기 위해 최근에는 GPU(Graphics Processing Unit) 기반의 광선추적법 알고리즘이 활발하게 개발되고 있으며, 본 논문에서는 J. Purcell 등이 제안한 광선추적법 기법을 구현하였다. 그리고 구현된 알고리즘을 인터렉티브 응용분야에 활용하기 위해 렌더링 성능을 개선하는 두가지 방법을 적용하였다. 먼저, 그래픽스 하드웨어에서 지원하는 래스터라이제이션(rasterization)을 적용해 초기 광선의 교차점을 효과적으로 구했다. 또한 대상 물체를 가속화(acceleration) 구조로 구성하여 광선과 물체간의 교차연산에 소요되는 계산시간을 단축하였다. GPU 기반의 광선추적법 렌더링에서 다양한 성능 개선 알고리즘을 적용하여 향상된 렌더링 결과를 구체적으로 분석한 기존 연구가 비교적 적었으며, 본 논문에서는 각 과정에 따른 개선 결과를 제시하였다. 구현된 렌더러와 GPU 기반의 환경 맵을 비교하였으며 이동형 개인 컴퓨터와 무선 센싱 장비를 이용한 무선 원격 렌더링 시스템을 구현하였다. 제안된 시스템은 실시간 합성, 증강현실(augmented reality), 가상현실 등의 다양한 분야에서 활용될 것으로 기대된다.
Deep Neural Networks (DNN) has become an essential data processing architecture for the implementation of multiple computer vision tasks. Recently, DNN-based algorithms achieve much higher recognition accuracy than traditional algorithms based on shallow learning. However, training and inference DNNs require huge computational capabilities than daily usage purposes of computers. Moreover, with increased size and depth of DNNs, CPUs may be unsatisfactory since they use serial processing by default. GPUs are the solution that come up with greater speed compared to CPUs because of their Parallel Processing/Computation nature. In this paper, we analyze the inference time complexity of DNNs using well-known computer vision library, OpenCV. We measure and analyze inference time complexity for three cases, CPU, GPU-Float32, and GPU-Float16.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.