본 논문에서는 GPU(Graphics Processing Unit)에서 데이터를 처리할 수 있게 하여 단일 영상에서 효율적으로 깊이를 추정하는 방법을 제안한다. 단일 영상은 카메라의 투영 과정에 의해 깊이 정보가 소실되게 되며 영상에서 소실된 깊이를 추정하기 위해서 단안 단서를 이용한다. 제안하는 깊이 추정 알고리즘은 좀 더 신뢰성 있는 깊이를 추정하고자 여러 단안 단서를 이용하며 에너지 최소화를 통해 단안 단서들을 결합한다. 그러나 여러 단안 단서들을 고려해야하기 때문에 처리해야 할 데이터가 많은 단점이 존재한다. 따라서 GPGPU(General Purpose Graphics Processing Unit)를 통해 데이터를 병렬적으로 처리하게 하여 효율적으로 깊이를 추정하는 방법을 제안한다. 객관적인 효율성을 검증하기 위해 PSNR(Peak Signal to Noise Ratio)을 통해 실험하였으며 GPGPU을 이용함으로써 알고리즘의 수행시간을 평균 61.22% 감소시켰다.
본 연구에서는 인공지능을 활용한 영상분석 기술을 통해 영상 내의 월파를 실시간으로 감지하고 처오름 높이를 산정하는 기술을 제안하였다. 본 연구에서 제안한 월파 감지 시스템은 실시간으로 악기상 및 야간에도 월파를 감지할 수 있음을 확인하였다. 특히, 합성곱 신경망을 적용하여 실시간으로 CCTV 영상에서 파랑의 처오름을 감지하고 월파 여부를 판단하는 여과 알고리즘을 적용하여 월파의 발생 감지에 대한 정확성을 향상시켰다. AP50을 통해 월파 감지 결과의 정확도는 59.6%로 산정되었으며, 월파 감지 모델의 속도는 GPU 기준 70fps로 실시간 감지에 적합한 정확도와 속도를 보임을 확인하였다.
최근 높은 해상도의 볼륨 데이터를 획득할 수 있게 되면서 제한된 용량의 메모리를 가진 그래픽 하드웨어에서 대용량 볼륨 데이터를 렌더링 하는 방법이 필요하게 되었다. 대용량 볼륨 데이터의 렌더링 방법 중 데이터를 적절히 분할하여 순차적으로 처리하는 블리킹 (bricking) 방법이 많이 사용된다. 그러나 일반적인 블리킹 방법은 직교 좌표계를 사용하는 CT와 MR 데이터를 위해 고안된 것으로, 원환체 (torus) 좌표계를 사용하는 부채꼴 형태의 초음파 볼륨 데이터에 적용하면, 관측광선이 블릭 (brick)의 곡면경계로 진입한 후 다시 빠져 나갈 때 동일한 블릭이 GPU메모리에 두번 적재되는 경우가 발생한다. 본 논문에서는 초음파 볼륨을 랜더링 할 때 반복적인 텍스쳐 스위칭이 발생하지 않도록 블릭의 크기를 결정하는 방법을 제안한다. 블릭의 경계는 곡면으로 되어 있으므로 이들의 곡률을 계산하여, 관측광선이 동일한 블록을 두 번 참조하는 영역을 찾는다. 이 영역에 해당하는 복셀들을 인접한 두 블릭들이 공유하도록 크기를 정하면 둘 중의 한 블릭에서만 재샘플링하게 함으로써 블릭이 중복 적재되는 것을 피할 수 있다.
A pose estimation process from medical images is calculating locations and orientations of objects obtained from Computed Tomography (CT) volume data utilizing X-ray images from two directions. In this process, digitally reconstructed radiograph (DRR) images of spatially transformed objects are generated and compared to X-ray images repeatedly until reasonable transformation matrices of the objects are found. The DRR generation and image comparison take majority of the total time for this pose estimation. In this paper, a fast DRR generation technique based on GPU parallel computing is introduced. A volume ray-casting algorithm is explained with brief vector operations and a parallelization technique of the algorithm using Compute Unified Device Architecture (CUDA) is discussed. This paper also presents the implementation results and time measurements comparing to those from pure-CPU implementation and open source toolkit.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권2호
/
pp.825-836
/
2016
In this paper, a speed-up technique for the non-local means (NLM) image denoising method based on local binary descriptor (LBD) is proposed. In the NLM, most of the computation time is spent on searching for non-local similar patches in the search window. The local binary descriptor which represents the structure of patch as binary strings is employed to speed up the search process in the NLM. The descriptor allows for a fast and accurate preselection of non-local similar patches by bitwise operations. Using this approach, a tradeoff between time-saving and noise removal can be obtained. Simulations exhibit that despite being principally constructed for speed, the proposed algorithm outperforms in terms of denoising quality as well. Furthermore, a parallel implementation on GPU brings NLM-LBD to real-time image denoising.
3차원 입체 영상을 디스플레이에 출력하려면, 여러 시점에서의 영상 정보가 필요하다. 여러 시점의 영상을 얻을 수 있는 가장 기본적인 방법은, 필요로 하는 시점의 개수와 동일 한 수의 카메라를 사용하는 것이다. 하지만 이를 위해서는 카메라간의 동기화 와 방대한 데이터 처리 및 전송 등의 현실적인 문제가 해결되어야 한다. 이러한 현실적인 문제를 해결하기 위해서 연구되고 있는 방법이 한정된 시점 영상을 이용하여 여러 중간 시점 영상을 생성하는 영상 기반의 임의 시점 합성 방법이다. 본 논문에서는 두 개의 기준 시점 영상과 각각의 깊이 정보가 주어줬음을 가정하고 주어진 정보를 바탕으로 이중의 순차적인 전방 사상을 통하여 목표로 하는 여러 다중 시점의 영상을 동시에 합성하는 방법을 제시한다. 제안된 방법은 좌우 기준 시점 영상의 평행 이동으로 가상 시점 영상을 생성 할 수 있으며, 평행 이동은 시점의 거리에 비례한 행렬간의 관계로 나타난다. 따라서 이중의 순차적인 전방 사상이라 함은 좌우 시점에서 가상 시점 거리에 따른 관계식을 통한 순차적인 양안 시점의 평행 이동을 의미한다. 이 때 전방 사상을 통해 생성되는 가상 시점 영상과 기준 시점 영상간의 기하관계가 시점간 거리에 비례하여 반복적이므로 이를 GPU 프로그래밍을 통해 병렬 처리를 통해 고속화 하는데 초점을 맞추었다.
In this paper, we implement and evaluate the performance of a vector-based rasterization algorithm for 3D graphics by using a SIMD (single instruction multiple data) many-core processor architecture. In addition, we evaluate the impact of a data-per-processing elements (DPE) ratio that is defined as the amount of data directly mapped to each processing element (PE) within many-core in terms of performance, energy efficiency, and area efficiency. For the experiment, we utilize seven different PE configurations by varying the DPE ratio (or the number PEs), which are implemented in the same 130 nm CMOS technology with a 500 MHz clock frequency. Experimental results indicate that the optimal PE configuration is achieved as the DPE ratio is in the range from 16,384 to 256 (or the number of PEs is in the range from 16 and 1,024), which meets the requirements of mobile devices in terms of the optimal performance and efficiency.
We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At run-time, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30~100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.
본 논문에서는 3D 콘텐츠 생성 시 필요한 깊이 영상의 화질 개선을 위하여 잡음 제거 기법과 홀 채움 기법을 제안한다. 제안하는 기법에서는 컬러 영상과 깊이 영상을 모두 이용하게 된다. 먼저 입력된 컬러 영상을 RGB 색상계에서 HSI 색상계로 변환하여 밝기 영상을 생성한다. 그리고 깊이 영상에서 기준 화소와 주변 화소간의 거리 값, 깊이 값의 차이를 구하고 컬러 영상의 밝기 값 차이를 계산하여 제안하는 잡음 제거 기법에 이용한다. 이후 홀을 탐색하여 홀과 주변 화소간의 거리, 컬러 영상의 밝기 값 차이를 제안하는 홀 채움 기법을 적용하여 깊이 영상 내에 존재하는 홀을 채우게 된다. 마지막으로 실시간 환경에 적용하기 위하여 제안하는 기법을 GPU로 병렬화하여 속도 향상을 하고자 하였다. 실험을 통하여 제안한 기법이 기존 기법에서 발생하는 경계 부분의 흐려짐 현상을 줄이면서 홀을 채우는 것을 확인하였다.
많은 수치 정점 정보를 사용하지 않는 대신 기하의 높이 정보를 저장한 높이 맵을 사용하여 복잡한 표면을 표현하는 기법은 많이 연구되어 왔다. 하지만 단층으로 구성된 높이 맵은 표면으로부터의 각 위치 당 한 개의 높이 정보를 저장하고 있으므로 복잡하고 오목한 물체를 표현할 수 없다. 이 논문에서는 다층으로 구성된 높이 맵을 사용하여 단일 높이 정보로는 재구성할 수 없는 복잡한 물체를 정확하게 그리는 방법에 대하여 소개한다. 우리는 그리고자 하는 장면의 높이 값을 텍스처의 각 채널에 높이에 따라 순차적으로 저장한 다층 높이 맵의 높이 정보가 2채널 마다 쌍을 이루며 기하 블록을 구성하는 점에 착안하였다. 안전하고 정확한 광선 탐색은 다증 높이 맵의 1, 3번 째 채널은 높이의 최대값을 2, 4번 째 채널은 높이의 최소값을 사용하여 이미지 피라미드를 구성함으로써 이루어진다. 이런 구조에서의 광선 탐색은 선형 탐색에 기반 한 기존의 방식들이 스침각에서 화질이 현저히 낮아지는 문제를 개선하였으며 실시간에서 표현이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.