International Journal of Computer Science & Network Security
/
제22권2호
/
pp.193-198
/
2022
Face Detection is one of the most important aspects of image processing, it considers a time-consuming problem in real-time applications such as surveillance systems, face recognition systems, attendance system and many. At present, commodity hardware is getting more and more heterogeneity in terms of architectures such as GPU and MIC co-processors. Utilizing those co-processors along with the existing traditional CPUs gives the algorithm a better chance to make use of both architectures to achieve faster implementations. This paper presents a hybrid implementation of the face detection based on the local binary pattern (LBP) algorithm that is deployed on both traditional CPU and MIC co-processor to enhance the speed of the LBP algorithm. The experimental results show that the proposed implementation achieved improvement in speed by 3X when compared to a single architecture individually.
A parallel Monte Carlo photon migration algorithm for graphics processing units that implements an improved load-balancing strategy is presented. Conventional parallel Monte Carlo photon migration algorithms suffer from a computational bottleneck due to their reliance on a simple load-balancing strategy that does not take into account the different length of the mean free paths of the photons. In this paper, path-partition load balancing is proposed to eliminate this computational bottleneck based on a mathematical formula that parallelizes the photon path tracing process, which has previously been considered non-parallelizable. The performance of the proposed algorithm is tested using three-dimensional photon migration simulations of a human skin model.
본 논문에서는 결합형 양방향 필터를 이용하여 깊이 영상을 실시간으로 보정하는 방법을 제안한다. 제안한 방법은 Kinect 깊이 카메라로부터 얻은 깊이 영상의 화질을 실시간으로 향상시키기 위해 GPU 내의 상수 메모리와 2차원 영상 처리에 적합한 텍스쳐 메모리를 사용한다. 또한, 단일 화소에 대한 결합형 양방향 필터 연산을 각 GPU 쓰레드(thread)에 할당한 다음 병렬로 처리하여 계산량을 현저히 감소시킨다. 그리고 깊이 영상의 품질을 더욱 높이기 위해 CUDA를 이용해 구현한 결합형 양방향 필터를 계층형 구조로 반복적으로 수행하여 폐색 영역이 채워진 깊이 영상을 얻을 수 있다. 실험 결과를 통해, 제안한 실시간 깊이 영상 보정 방법이 깊이 영상의 주관적 화질을 향상시키고, 초당 55 화면의 속도로 동작하는 것을 확인했다.
비사실적 렌더링(NPR; Non-Photorealistic Rendering)은 2차원 영상과 3차원 모델을 대상으로 하는 방법이 다르며 각각의 대상에 NPR을 적용하여 두 콘텐츠를 혼합하면 이질감이 나타나는 문제점이 있다. 본 논문에서는 3차원 객체와 영상에 있어서 각각의 대상에 카툰 및 스케치와 같은 비사실적 효과를 적용하여 조화롭게 혼합하는 기법을 제시한다. 제안 기법은 2차원 영상의 데이터를 분석하여 컬러 분포 특징을 얻고 이를 이용하여 실사 영상이나 3D 객체의 컬러 수를 줄인다. 단순화된 컬러맵과 윤곽선 에지 데이터로부터 비사실적 렌더링을 실시한다. 컬러맵 정보의 추출 및 적용 과정에서 자연스러운 장면 연출을 위해서 영상분할 과정이 필요하다. 그러나 영상분할 기법은 많은 연산을 필요로 한다. 특히 크기가 큰 입력에 대해서는 비사실적 렌더링에 많은 시간이 소요된다. 처리 시간이 많은 영상분할의 고속화를 위하여 GPU(Graphics Processing Unit)를 이용한 병렬 컴퓨팅을 할 수 있는 GPGPU(General-Purpose GPU)를 사용한다. GPGPU의 사용으로 알고리즘의 수행속도를 크게 개선하였다. 또한 영상분할 후 단순화된 컬러를 추출하여 일련의 컬러맵을 생성한 뒤 3D 객체에 NPR을 적용할 때 추출해낸 컬러맵을 적용하여 2차원 영상과 3차원 객채 간의 이질감을 줄이고 조화롭게 하였다.
Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.
최근 산업의 여러 분야에서 자동화 시스템이 발전함에 따라 3D 측정에 의한 물체의 높이 검사의 필요성이 점차 대두되고 있다. 여러 3D 측정 방법 중에서 본 논문에서 다루는 방법은 위상 측정법으로, 위상 측정법이란 프린지 패턴의 위상값을 이용하여 물체의 높이를 구하는 방법이다. 위상 측정법은 연산량이 많이 필요한 알고리즘이기 때문에 이를 효율적으로 해결할 방법이 필요하다. 본 논문에서는 이를 위해 NVIDIA에서 나온 CUDA를 사용할 것을 제안했다. 또 CUDA에서 제공하는 Pinned memory와 Stream을 사용할 것을 제안하였다. 이를 통해 정확도를 유지하면서 측정 속도는 크게 향상시킬 수 있었고 실험을 통해 성능을 입증하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권7호
/
pp.3543-3557
/
2017
Compression is a very important technique for remotely sensed hyperspectral images. The lossless compression based on the recursive least square (RLS), which eliminates hyperspectral images' redundancy using both spatial and spectral correlations, is an extremely powerful tool for this purpose, but the relatively high computational complexity limits its application to time-critical scenarios. In order to improve the computational efficiency of the algorithm, we optimize its serial version and develop a new parallel implementation on graphics processing units (GPUs). Namely, an optimized recursive least square based on optimal number of prediction bands is introduced firstly. Then we use this approach as a case study to illustrate the advantages and potential challenges of applying GPU parallel optimization principles to the considered problem. The proposed parallel method properly exploits the low-level architecture of GPUs and has been carried out using the compute unified device architecture (CUDA). The GPU parallel implementation is compared with the serial implementation on CPU. Experimental results indicate remarkable acceleration factors and real-time performance, while retaining exactly the same bit rate with regard to the serial version of the compressor.
최근 디스플레이의 해상도가 높아짐에 따라 그래픽 하드웨어가 처리해야할 데이터량과 연산량이 증가 하고 있다. 특히 레스터라이저의 데이터 처리량이 크게 증가 하고 있다. 본 논문은 높은 해상도의 많은 데이터를 빠르게 처리하기 위하여 레스터라이저를 병렬로 설계 하였다. 본 논문은 레스터라이저의 병렬화를 용이하게 하기 위하여 기존 보간 단계에서 사용하는 Bilinear 알고리즘[1] 대신 삼각형의 무게중심 좌표와 넓이를 이용하는 알고리즘을 사용하였다. 설계한 레스터라이저를 FPGA 환경에서 구현하여 기존 레스터라이저와 비교 검증 하였다. 기존 레스터라이저와 비교 결과 성능이 약 50퍼센트 상승 하였다.
A reliable automatic passenger counting (APC) system is a key point in transportation related to the efficient scheduling and management of transport routes. In this study, we introduce a lightweight head detection network using deep learning applicable to an embedded system. Currently, object detection algorithms using deep learning have been found to be successful. However, these algorithms essentially need a graphics processing unit (GPU) to make them performable in real-time. So, we modify a Tiny-YOLOv3 network using certain techniques to speed up the proposed network and to make it more accurate in a non-GPU environment. Finally, we introduce an APC system, which is performable in real-time on embedded systems, using the proposed head detection algorithm. We implement and test the proposed APC system on a Samsung ARTIK 710 board. The experimental results on three public head datasets reflect the detection accuracy and efficiency of the proposed head detection network against Tiny-YOLOv3. Moreover, to test the proposed APC system, we measured the accuracy and recognition speed by repeating 50 instances of entering and 50 instances of exiting. These experimental results showed 99% accuracy and a 0.041-second recognition speed despite the fact that only the CPU was used.
In this paper, we propose a parallel optimization method of Aho-Corasick (AC) algorithm and Parallel Failureless Aho-Corasick (PFAC) algorithm using Open Computing Language (OpenCL) on Field Programmable Gate Array (FPGA). The low throughput of string matching engine causes the performance degradation of network process. Recently, many researchers have studied the string matching engine using parallel computing. FPGA's vendors offer a parallel computing platform using OpenCL. In this paper, we apply the AC and PFAC algorithm on DE1-SoC board with Cyclone V FPGA, where the optimization that considers FPGA architecture is performed. Experiments are performed considering global id, local id, local memory, and loop unrolling optimizations using PFAC algorithm. The performance improvement using loop unrolling is 129 times greater than AC algorithm that not adopt loop unrolling. The performance improvements using loop unrolling are 1.1, 0.2, and 1.5 times greater than those using global id, local id, and local memory optimizations mentioned above.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.