• 제목/요약/키워드: GPU Parallel Processing

검색결과 226건 처리시간 0.024초

임베디드 병렬 프로세서 상에서 MMX타입 명령어의 성능평가 및 검증 (Performance Evaluation and Verification of MMX-type Instructions on an Embedded Parallel Processor)

  • 정용범;김용민;김철홍;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권10호
    • /
    • pp.11-21
    • /
    • 2011
  • 본 논문에서는 멀티미디어에 내재한 무수한 데이터를 효율적으로 처리할 수 있는 SIMD(Single Instruction Multiple Data) 기반 병렬 프로세서를 소개한다. 또한, 인텔사의 대표적인 멀티미디어 전용 명령어인 MMX (MultiMedia eXtension)타입 명령어를 병렬 프로세서에 구현하여 성능을 평가하고 결과를 분석한다. 16개의 32-비트 프로세서로 구성된 병렬프로세서를 이용하여 1280x1024픽셀 이미지의 JPEG 압축 애플리케이션을 구현하고 모의 실험한 결과, 동일한 병렬프로세서 기반에서 MMX타입 명령어는 베이스라인 명령어보다 약 50%의 성능 향상을 보였다. 또한, MMX타입 명령어는 베이스라인 명령어보다 에너지 효율에서 100%, 시스템 면적 효율에서 51%의 향상을 보였다. 이러한 결과는 MMX를 포함한 멀티미디어 전용 명령어들이 현재 널리 사용되고 있는 매니코어 GPU(Graphics Processing Unit) 및 다양한 형태의 병렬프로세서에서도 잠재 가능성이 있음을 보여준다.

GPU에서 CUDA를 이용한 그래프 유사도 측정을 위한 병렬 알고리즘 (A Parallel Algorithm for Measuring Graph Similarity Using CUDA on GPU)

  • 손민영;김영학;최성자
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권3호
    • /
    • pp.156-164
    • /
    • 2017
  • 두 그래프의 유사도를 측정하는 문제는 다양한 응용분야에서 그래프 문제를 해결하기 위한 기본적인 도구 중 하나이다. 대부분 그래프 알고리즘들은 정점과 간선의 개수를 기반으로 한 시간 복잡도를 가진다. 최근 GPU는 낮은 가격 대비 높은 계산 능력을 제공하기 때문에 그래프 응용에서 수행 시간을 개선하기 위해 널리 활용되고 있다. 본 논문에서는 GPU 환경에서 CUDA를 사용하여 그래프의 유사도를 측정하기 위한 효율적인 병렬 알고리즘을 제안한다. 제안된 알고리즘의 평가를 위해 CPU 기반 알고리즘과 비교하였으며 실험적 결과를 통하여 제안된 방법이 성능과 효율성에서 상당한 개선이 있음을 보인다. 또한 그래프의 크기가 클수록 제안된 알고리즘의 성능이 더 개선됨을 보인다.

GPU를 이용한 선형 스크래치 탐지와 복원 알고리즘의 설계 (Design of Line Scratch Detection and Restoration Algorithm using GPU)

  • 이준구;심세용;유병문;황두성
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.9-16
    • /
    • 2014
  • 본 논문은 화소 데이터의 비교를 이용한 단일 프레임 또는 연속 프레임에 나타나는 선형 스크래치를 탐지하여 복원하는 알고리즘을 제안하였다. 스크래치탐지와 복원방법은 프레임 간 많은 비교 연산시간을 필요로 하며 병렬처리 가능성이 높다. 제안하는 스크래치 탐지와 복원방법은 빠른 처리를 위해 GPU에서 수행할 수 있도록 병렬 설계 하였다. 제안하는 알고리즘은 국가 기록원 디지털화 영상에 대해 순차처리와 병렬처리의 성능 테스트를 수행하였다. 실험에서 연속한 스크래치를 고려하는 경우의 탐지율은 단일 프레임만 고려하는 방법보다 20% 이상 성능이 향상되었다. GPU 기반 알고리즘의 탐지율과 복원율은 CPU 기반의 알고리즘과 유사하였으나 50배 이상의 연산속도가 향상되었다.

GPU의 공유메모리를 활용한 확장편집거리 병렬계산 (Parallel Computation for Extended Edit Distances Using the Shared Memory on GPU)

  • 김영호;나중채;심정섭
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권7호
    • /
    • pp.213-218
    • /
    • 2015
  • 알파벳 ${\Sigma}$로 구성된 길이가 각각 m, n인 두 문자열 X, Y가 주어졌을 때, X, Y의 확장편집거리는 동적프로그래밍을 이용하여 O(mn) 시간과 공간을 계산할 수 있다. 최근 m개의 쓰레드를 이용하여 O(m+n) 시간과 O(mn) 공간을 사용하여 X, Y의 확장편집거리를 계산하는 병렬알고리즘이 제시되었다. 본 논문에서는 GPU의 공유메모리를 활용하여 수행시간을 개선한 병렬알고리즘을 제시한다. 실험 결과, 개선된 병렬알고리즘이 기존의 병렬알고리즘보다 약 19~25배 이상 빠른 수행시간을 보였다.

GPU 하드웨어 아키텍처 기반 sub-warp 단위 병렬 프리픽스(prefix) 연산의 정확한 구현 (Correct Implementation of Sub-warp Parallel Prefix Operations based on GPU Hardware Architecture)

  • 박태정
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권3호
    • /
    • pp.613-619
    • /
    • 2017
  • 본 논문에서는 대규모 데이터를 길이가 32 미만인 로컬 세그먼트 단위로 구분하고 이 로컬 세그먼트 내에서 정확한 GPU 병렬 프리픽스(prefix) 연산 결과를 출력하는 CUDA (Compute Unified Device Architecture) 코드를 제시한다. 이미 Mark Harris와 Michael Garland가 이러한 목적을 수행하기 위한 CUDA 코드를 이미 발표한 바 있으나 본 논문에서는 로컬 세그먼트의 길이가 32 미만일 때 기존 코드의 결과가 정확하지 않다는 사실을 살펴 보고 그 원인을 논의한 후, 정확한 결과를 출력하는 코드를 제안한다. 본 논문에서 다루는 로컬 세그먼트 단위의 병렬 프리픽스 연산은 최인접 요소 탐색(k-nearest neighbor search) 등은 물론 다양한 대규모 병렬 처리 알고리즘을 구성하는 기본 연산으로 활용 가능하다.

GPU를 이용한 야간 보행자 검출과 추적 시스템 구현 (Implementation of Pedestrian Detection and Tracking with GPU at Night-time)

  • 최범준;윤병우;송종관;박장식
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.421-429
    • /
    • 2015
  • 이 논문은 적외선 영상을 이용하여 보행자를 검출하고 추적하는 방법에 관한 것이다. 영상기반 보행 검출 및 추적 처리 속도를 개선하기 위하여 병렬처리언어인 CUDA(Computer Unified Device Architecture)를 활용한다. 보행자 검출은 하르 유사 특징을 기반으로 Adaboost 알고리즘을 적용한다. Adaboost 분류는 적외선 영상으로 제작한 데이터셋을 이용하여 훈련한다. Adaboost 분류기로 보행자를 검출한 후, HSV 히스토그램을 특징점으로 파티클 필터를 이용하여 보행자를 추적하는 방법을 제안한다. 제안하는 검출 및 추적 방법을 Linux 환경에서 소프트웨어를 개발할 수 있는 NVIDIA의 Jetson TK1 개발보드 상에 구현하였다. 이 논문에서는 보행자 검출 및 추적을 CUDA 개발환경인 GPU를 이용하여 병렬처리한 결과를 나타내었다. GPU를 이용한 보행자 검출과 추적 처리 속도가 CPU 처리속도에 비하여 약 6 배 빠른 것을 확인할 수 있다.

APBT-JPEG Image Coding Based on GPU

  • Wang, Chengyou;Shan, Rongyang;Zhou, Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권4호
    • /
    • pp.1457-1470
    • /
    • 2015
  • In wireless multimedia sensor networks (WMSN), the latency of transmission is an increasingly problem. With the improvement of resolution, the time cost in image and video compression is more and more, which seriously affects the real-time of WMSN. In JPEG system, the core of the system is DCT, but DCT-JPEG is not the best choice. Block-based DCT transform coding has serious blocking artifacts when the image is highly compressed at low bit rates. APBT is used in this paper to solve that problem, but APBT does not have a fast algorithm. In this paper, we analyze the structure in JPEG and propose a parallel framework to speed up the algorithm of JPEG on GPU. And we use all phase biorthogonal transform (APBT) to replace the discrete cosine transform (DCT) for the better performance of reconstructed image. Therefore, parallel APBT-JPEG is proposed to solve the real-time of WMSN and the blocking artifacts in DCT-JPEG in this paper. We use the CUDA toolkit based on GPU which is released by NVIDIA to design the parallel algorithm of APBT-JPEG. Experimental results show that the maximum speedup ratio of parallel algorithm of APBT-JPEG can reach more than 100 times with a very low version GPU, compared with conventional serial APBT-JPEG. And the reconstructed image using the proposed algorithm has better performance than the DCT-JPEG in terms of objective quality and subjective effect. The proposed parallel algorithm based on GPU of APBT also can be used in image compression, video compression, the edge detection and some other fields of image processing.

OpenCV 내장 CPU 및 GPU 함수를 이용한 DNN 추론 시간 복잡도 분석 (Performance Analysis of DNN inference using OpenCV Built in CPU and GPU Functions)

  • 박천수
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.75-78
    • /
    • 2022
  • Deep Neural Networks (DNN) has become an essential data processing architecture for the implementation of multiple computer vision tasks. Recently, DNN-based algorithms achieve much higher recognition accuracy than traditional algorithms based on shallow learning. However, training and inference DNNs require huge computational capabilities than daily usage purposes of computers. Moreover, with increased size and depth of DNNs, CPUs may be unsatisfactory since they use serial processing by default. GPUs are the solution that come up with greater speed compared to CPUs because of their Parallel Processing/Computation nature. In this paper, we analyze the inference time complexity of DNNs using well-known computer vision library, OpenCV. We measure and analyze inference time complexity for three cases, CPU, GPU-Float32, and GPU-Float16.

GPU를 이용한 신경망 구현 (Implementation of Neural Networks using GPU)

  • 오경수;정기철
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.735-742
    • /
    • 2004
  • 본 논문은 일반적인 그래픽스 하드웨어를 이용하여 더욱 빠른 신경망을 구현하고, 구현된 시스템을 영상 처리 분야에 적용함으로써 효용성을 검증한다. GPU의 병렬성을 효율적으로 사용하기 위하여, 다수의 입력벡터와 연결가중치벡터를 모아서 많은 내적연산을 하나의 행렬곱 연산으로 대체하였고, 시그모이드와 바이어스 항 덧셈 연산도 GPV 상에서 픽셀세이더로 구현하였다. ATI RADEON 9800 XT 보드를 이용하여 구현된 신경망 시스템은 CPU를 사용한 기존의 시스템과 비교하여 정확도의 차이 없이 30배 정도의 속도 향상을 얻을 수 있었다.

CPU-GPU 메모리 계층을 고려한 고처리율 병렬 KMP 알고리즘 (High Throughput Parallel KMP Algorithm Considering CPU-GPU Memory Hierarchy)

  • 박소은;김대희;이명호;박능수
    • 전기학회논문지
    • /
    • 제67권5호
    • /
    • pp.656-662
    • /
    • 2018
  • Pattern matching algorithm is widely used in many application fields such as bio-informatics, intrusion detection, etc. Among many string matching algorithms, KMP (Knuth-Morris-Pratt) algorithm is commonly used because of its fast execution time when using large texts. However, the processing speed of KMP algorithm is also limited when the text size increases significantly. In this paper, we propose a high throughput parallel KMP algorithm considering CPU-GPU memory hierarchy based on OpenCL in GPGPU (General Purpose computing on Graphic Processing Unit). We focus on the optimization for the allocation of work-times and work-groups, the local memory copy of the pattern data and the failure table, and the overlapping of the data transfer with the string matching operations. The experimental results show that the execution time of the optimized parallel KMP algorithm is about 3.6 times faster than that of the non-optimized parallel KMP algorithm.