본 논문에서는 멀티미디어에 내재한 무수한 데이터를 효율적으로 처리할 수 있는 SIMD(Single Instruction Multiple Data) 기반 병렬 프로세서를 소개한다. 또한, 인텔사의 대표적인 멀티미디어 전용 명령어인 MMX (MultiMedia eXtension)타입 명령어를 병렬 프로세서에 구현하여 성능을 평가하고 결과를 분석한다. 16개의 32-비트 프로세서로 구성된 병렬프로세서를 이용하여 1280x1024픽셀 이미지의 JPEG 압축 애플리케이션을 구현하고 모의 실험한 결과, 동일한 병렬프로세서 기반에서 MMX타입 명령어는 베이스라인 명령어보다 약 50%의 성능 향상을 보였다. 또한, MMX타입 명령어는 베이스라인 명령어보다 에너지 효율에서 100%, 시스템 면적 효율에서 51%의 향상을 보였다. 이러한 결과는 MMX를 포함한 멀티미디어 전용 명령어들이 현재 널리 사용되고 있는 매니코어 GPU(Graphics Processing Unit) 및 다양한 형태의 병렬프로세서에서도 잠재 가능성이 있음을 보여준다.
두 그래프의 유사도를 측정하는 문제는 다양한 응용분야에서 그래프 문제를 해결하기 위한 기본적인 도구 중 하나이다. 대부분 그래프 알고리즘들은 정점과 간선의 개수를 기반으로 한 시간 복잡도를 가진다. 최근 GPU는 낮은 가격 대비 높은 계산 능력을 제공하기 때문에 그래프 응용에서 수행 시간을 개선하기 위해 널리 활용되고 있다. 본 논문에서는 GPU 환경에서 CUDA를 사용하여 그래프의 유사도를 측정하기 위한 효율적인 병렬 알고리즘을 제안한다. 제안된 알고리즘의 평가를 위해 CPU 기반 알고리즘과 비교하였으며 실험적 결과를 통하여 제안된 방법이 성능과 효율성에서 상당한 개선이 있음을 보인다. 또한 그래프의 크기가 클수록 제안된 알고리즘의 성능이 더 개선됨을 보인다.
본 논문은 화소 데이터의 비교를 이용한 단일 프레임 또는 연속 프레임에 나타나는 선형 스크래치를 탐지하여 복원하는 알고리즘을 제안하였다. 스크래치탐지와 복원방법은 프레임 간 많은 비교 연산시간을 필요로 하며 병렬처리 가능성이 높다. 제안하는 스크래치 탐지와 복원방법은 빠른 처리를 위해 GPU에서 수행할 수 있도록 병렬 설계 하였다. 제안하는 알고리즘은 국가 기록원 디지털화 영상에 대해 순차처리와 병렬처리의 성능 테스트를 수행하였다. 실험에서 연속한 스크래치를 고려하는 경우의 탐지율은 단일 프레임만 고려하는 방법보다 20% 이상 성능이 향상되었다. GPU 기반 알고리즘의 탐지율과 복원율은 CPU 기반의 알고리즘과 유사하였으나 50배 이상의 연산속도가 향상되었다.
알파벳 ${\Sigma}$로 구성된 길이가 각각 m, n인 두 문자열 X, Y가 주어졌을 때, X, Y의 확장편집거리는 동적프로그래밍을 이용하여 O(mn) 시간과 공간을 계산할 수 있다. 최근 m개의 쓰레드를 이용하여 O(m+n) 시간과 O(mn) 공간을 사용하여 X, Y의 확장편집거리를 계산하는 병렬알고리즘이 제시되었다. 본 논문에서는 GPU의 공유메모리를 활용하여 수행시간을 개선한 병렬알고리즘을 제시한다. 실험 결과, 개선된 병렬알고리즘이 기존의 병렬알고리즘보다 약 19~25배 이상 빠른 수행시간을 보였다.
본 논문에서는 대규모 데이터를 길이가 32 미만인 로컬 세그먼트 단위로 구분하고 이 로컬 세그먼트 내에서 정확한 GPU 병렬 프리픽스(prefix) 연산 결과를 출력하는 CUDA (Compute Unified Device Architecture) 코드를 제시한다. 이미 Mark Harris와 Michael Garland가 이러한 목적을 수행하기 위한 CUDA 코드를 이미 발표한 바 있으나 본 논문에서는 로컬 세그먼트의 길이가 32 미만일 때 기존 코드의 결과가 정확하지 않다는 사실을 살펴 보고 그 원인을 논의한 후, 정확한 결과를 출력하는 코드를 제안한다. 본 논문에서 다루는 로컬 세그먼트 단위의 병렬 프리픽스 연산은 최인접 요소 탐색(k-nearest neighbor search) 등은 물론 다양한 대규모 병렬 처리 알고리즘을 구성하는 기본 연산으로 활용 가능하다.
이 논문은 적외선 영상을 이용하여 보행자를 검출하고 추적하는 방법에 관한 것이다. 영상기반 보행 검출 및 추적 처리 속도를 개선하기 위하여 병렬처리언어인 CUDA(Computer Unified Device Architecture)를 활용한다. 보행자 검출은 하르 유사 특징을 기반으로 Adaboost 알고리즘을 적용한다. Adaboost 분류는 적외선 영상으로 제작한 데이터셋을 이용하여 훈련한다. Adaboost 분류기로 보행자를 검출한 후, HSV 히스토그램을 특징점으로 파티클 필터를 이용하여 보행자를 추적하는 방법을 제안한다. 제안하는 검출 및 추적 방법을 Linux 환경에서 소프트웨어를 개발할 수 있는 NVIDIA의 Jetson TK1 개발보드 상에 구현하였다. 이 논문에서는 보행자 검출 및 추적을 CUDA 개발환경인 GPU를 이용하여 병렬처리한 결과를 나타내었다. GPU를 이용한 보행자 검출과 추적 처리 속도가 CPU 처리속도에 비하여 약 6 배 빠른 것을 확인할 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권4호
/
pp.1457-1470
/
2015
In wireless multimedia sensor networks (WMSN), the latency of transmission is an increasingly problem. With the improvement of resolution, the time cost in image and video compression is more and more, which seriously affects the real-time of WMSN. In JPEG system, the core of the system is DCT, but DCT-JPEG is not the best choice. Block-based DCT transform coding has serious blocking artifacts when the image is highly compressed at low bit rates. APBT is used in this paper to solve that problem, but APBT does not have a fast algorithm. In this paper, we analyze the structure in JPEG and propose a parallel framework to speed up the algorithm of JPEG on GPU. And we use all phase biorthogonal transform (APBT) to replace the discrete cosine transform (DCT) for the better performance of reconstructed image. Therefore, parallel APBT-JPEG is proposed to solve the real-time of WMSN and the blocking artifacts in DCT-JPEG in this paper. We use the CUDA toolkit based on GPU which is released by NVIDIA to design the parallel algorithm of APBT-JPEG. Experimental results show that the maximum speedup ratio of parallel algorithm of APBT-JPEG can reach more than 100 times with a very low version GPU, compared with conventional serial APBT-JPEG. And the reconstructed image using the proposed algorithm has better performance than the DCT-JPEG in terms of objective quality and subjective effect. The proposed parallel algorithm based on GPU of APBT also can be used in image compression, video compression, the edge detection and some other fields of image processing.
Deep Neural Networks (DNN) has become an essential data processing architecture for the implementation of multiple computer vision tasks. Recently, DNN-based algorithms achieve much higher recognition accuracy than traditional algorithms based on shallow learning. However, training and inference DNNs require huge computational capabilities than daily usage purposes of computers. Moreover, with increased size and depth of DNNs, CPUs may be unsatisfactory since they use serial processing by default. GPUs are the solution that come up with greater speed compared to CPUs because of their Parallel Processing/Computation nature. In this paper, we analyze the inference time complexity of DNNs using well-known computer vision library, OpenCV. We measure and analyze inference time complexity for three cases, CPU, GPU-Float32, and GPU-Float16.
본 논문은 일반적인 그래픽스 하드웨어를 이용하여 더욱 빠른 신경망을 구현하고, 구현된 시스템을 영상 처리 분야에 적용함으로써 효용성을 검증한다. GPU의 병렬성을 효율적으로 사용하기 위하여, 다수의 입력벡터와 연결가중치벡터를 모아서 많은 내적연산을 하나의 행렬곱 연산으로 대체하였고, 시그모이드와 바이어스 항 덧셈 연산도 GPV 상에서 픽셀세이더로 구현하였다. ATI RADEON 9800 XT 보드를 이용하여 구현된 신경망 시스템은 CPU를 사용한 기존의 시스템과 비교하여 정확도의 차이 없이 30배 정도의 속도 향상을 얻을 수 있었다.
Pattern matching algorithm is widely used in many application fields such as bio-informatics, intrusion detection, etc. Among many string matching algorithms, KMP (Knuth-Morris-Pratt) algorithm is commonly used because of its fast execution time when using large texts. However, the processing speed of KMP algorithm is also limited when the text size increases significantly. In this paper, we propose a high throughput parallel KMP algorithm considering CPU-GPU memory hierarchy based on OpenCL in GPGPU (General Purpose computing on Graphic Processing Unit). We focus on the optimization for the allocation of work-times and work-groups, the local memory copy of the pattern data and the failure table, and the overlapping of the data transfer with the string matching operations. The experimental results show that the execution time of the optimized parallel KMP algorithm is about 3.6 times faster than that of the non-optimized parallel KMP algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.