• Title/Summary/Keyword: GPU Parallel Processing

검색결과 226건 처리시간 0.026초

GPU와 CPU의 병렬처리를 이용한 실시간 3D 모델링 (Real-time 3D Modeling using GPU and CPU in parallel processing)

  • 백운혁;경동욱;한은정;양종렬;정기철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.557-561
    • /
    • 2006
  • 3D 모델링 기술은 가상현실, 실감형 인터랙티브 등에서 많은 연구가 진행되고 있다. 실시간 3D 모델을 생성하는 연구는 많은 계산량으로 인해서 여러 대의 PC를 통합한 PC클러스터를 사용하고 있다. PC클러스터는 여러 대의 PC를 하나의 고성능 컴퓨터로 처리가 가능하지만, 여러 대의 PC를 효율적으로 제어 하는 문제와 고비용의 문제를 안고 있다. 본 논문은 한 대의 PC에서 멀티 코어를 동시에 수행하는 병렬처리 방법과 높은 계산 능력을 자랑하는 GPU와 CPU의 병렬처리 방법을 사용하여 한 대의 컴퓨터로 실시간 3D 모델 생성방법을 제안한다.

  • PDF

Accelerating Molecular Dynamics Simulation Using Graphics Processing Unit

  • Myung, Hun-Joo;Sakamaki, Ryuji;Oh, Kwang-Jin;Narumi, Tetsu;Yasuoka, Kenji;Lee, Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3639-3643
    • /
    • 2010
  • We have developed CUDA-enabled version of a general purpose molecular dynamics simulation code for GPU. Implementation details including parallelization scheme and performance optimization are described. Here we have focused on the non-bonded force calculation because it is most time consuming part in molecular dynamics simulation. Timing results using CUDA-enabled and CPU versions were obtained and compared for a biomolecular system containing 23558 atoms. CUDA-enabled versions were found to be faster than CPU version. This suggests that GPU could be a useful hardware for molecular dynamics simulation.

OpenCL을 이용한 내장형 GPU에서의 의학영상처리 가속화 (Accelerating Medical Image Processing on Integrated GPU Using OpenCL)

  • 김범준;신병석
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권2호
    • /
    • pp.1-10
    • /
    • 2017
  • 잡음이 있거나 해상도가 낮은 의료 영상의 화질을 개선하기 위해 다양한 필터를 적용한다. 이것은 환자의 방사선 피폭량을 줄이고, 기존에 사용하던 영상 촬영기기의 활용도를 높이기 위해 반드시 필요한 작업이다. 기존 방법에서는 PC의 CPU를 이용하여 필터링하는 것이 일반적이었다. 하지만 병원에서 사용하는 PC의 CPU 성능만으로는 해상도가 높은 인체 영상에 각종 연산 및 필터를 적용하여 실시간으로 결과를 만들어 내기는 어렵다. 본 논문에서는 CPU 안에 탑재되어 있는 인텔 내장 GPU의 구조와 성능을 분석하고 이를 기반으로 하여 OpenCL 병렬처리 기능을 적용한 영상 필터링을 수행하는 방법을 제안하였다. 이를 통해 의료 영상에 높은 연산량을 가지는 복잡한 필터를 적용하여 고화질의 결과물을 실시간에 생성할 수 있도록 하였다.

BioFET 시뮬레이션을 위한 CUDA 기반 병렬 Bi-CG 행렬 해법 (CUDA-based Parallel Bi-Conjugate Gradient Matrix Solver for BioFET Simulation)

  • 박태정;우준명;김창헌
    • 전자공학회논문지CI
    • /
    • 제48권1호
    • /
    • pp.90-100
    • /
    • 2011
  • 본 연구에서는 연산 부하가 매우 큰 Bio-FET 시뮬레이션을 위해 낮은 비용으로 대규모 병렬처리 환경 구축이 가능한 최신 그래픽 프로세서(GPU)를 이용해서 선형 방정식 해법을 수행하기 위한 병렬 Bi-CG(Bi-Conjugate Gradient) 방식을 제안한다. 제안하는 병렬 방식에서는 반도체 소자 시뮬레이션, 전산유체역학(CFD), 열전달 시뮬레이션 등을 포함한 다양한 분야에서 많은 연산량이 집중되어 전체 시뮬레이션에 필요한 시간을 증가시키는 포아송(Poisson) 방정식의 해를 병렬 방식으로 구한다. 그 결과, 이 논문의 테스트에서 사용된 FDM 3차원 문제 공간에서 단일 CPU 대비 연산 속도가 최대 30 배 이상 증가했다. 실제 구현은 NVIDIA의 태슬라 아키텍처(Tesla Architecture) 기반 GPU에서 범용 목적으로 병렬 프로그래밍이 가능한 NVIDIA사의 CUDA(Compute Unified Device Architecture) 환경에서 수행되었으며 기존 연구가 주로 32 비트 정밀도(single floating point) 실수 범위에서 수행된 것과는 달리 본 연구는 64 비트 정밀도(double floating point) 실수 범위로 수행되어 Bi-CG 해법의 수렴성을 개선했다. 특히, CUDA는 비교적 코딩이 쉬운 반면, 최적화가 어려운 특성이 있어 본 논문에서는 제안하는 Bi-CG 해법에서의 최적화 방향도 논의한다.

GPU 성능 저하 해결을 위한 내부 자원 활용/비활용 상태 분석 (Analysis on the Active/Inactive Status of Computational Resources for Improving the Performance of the GPU)

  • 최홍준;손동오;김종면;김철홍
    • 한국콘텐츠학회논문지
    • /
    • 제15권7호
    • /
    • pp.1-11
    • /
    • 2015
  • 최신 고성능 컴퓨팅 시스템에서는, 대용량 병렬 연산을 효과적으로 처리할 수 있는 GPU의 우수한 연산 성능을 그래픽 처리 이외의 범용 작업에 활용하는 GPGPU 기술에 관한 연구가 활발하게 진행 중이다. 하지만 범용 응용프로그램의 특성이 GPU 구조에 최적화되어 있지 않기 때문에 범용 프로그램 수행 시 GPGPU는 GPU의 연산 자원을 효과적으로 활용하지 못하고 있다. 그러므로 본 논문에서는 GPGPU 기술을 사용하는 컴퓨팅 시스템의 성능을 보다 향상시킬 수 있는 GPU 연구에 대한 방향을 제시하고자 한다. 이를 위하여, 본 논문에서는 GPU 성능 저하 원인 분석을 수행한다. GPU 성능 저하 원인을 보다 명확하게 분류하고자 본 논문에서는 GPU 코어의 상태를 완전 활성화 상태, 불완전 활성화 상태, 유휴 상태, 메모리스톨 상태, 그리고 GPU 코어 스톨 상태 등 5가지로 정의하였다. 완전 활성화 상태를 제외한 모든 GPU 코어 상태들은 컴퓨팅 시스템의 성능 저하를 유발한다. 본 논문에서 성능 저하 원인을 찾고자 벤치마크 프로그램의 특성에 따라 각 GPU 코어 상태의 비율 변화를 측정하였다. 분석 결과에 따르면, 불완전 활성화 상태, 유휴 상태, 메모리 스톨 상태 그리고 GPU 코어 스톨 상태는 연산 자원 활용률 저하, 낮은 프로그램 병렬성, 높은 메모리 요청, 그리고 구조적 해저드에 의해 각각 유발된다.

GPGPU 를 이용한 양 방향성 필터의 병렬 구현 및 성능 평가 (Efficient Parallel Bilateral Filter using GPGPU)

  • 장기준;노원우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.369-372
    • /
    • 2011
  • 양 방향성 필터는 이미지표면 평탄화와 잡음제거에 좋은 성능을 보이지만 특유의 연산 복잡도로 인하여 연산 시간이 오래 걸린다는 단점이 존재한다. 따라서 본 논문에서는 고도의 병렬수행을 바탕으로 하는 그래픽연산장치(GPU)에 적합하도록 수정된 효율적인 양 방향성 필터를 NVIDIA 의 CUDA 를 사용하여 GTX 285 GPU 에서 구현하였다. 영상의 전 영역을 참조하는 대신 인접하고 연속된 영역으로의 근사화, 적은 메모리 사용량, 빠른 접근속도를 가지며 충돌이 최소화된 공유메모리 버퍼, Warp 를 고려한 병합된 메모리 접근방법을 바탕으로 병렬화 하였다. 그 결과, 같은 방식의 순차실행 알고리즘 대비 최소 약 34 배에서 최대 약 76 배의 속도 개선과 30dB 내외의 PSNR 을 갖는 양 방향성 필터를 구현할 수 있었다.

OpenCL을 활용한 이기종 파이프라인 컴퓨팅 기반 Spark 프레임워크 (Spark Framework Based on a Heterogenous Pipeline Computing with OpenCL)

  • 김대희;박능수
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.270-276
    • /
    • 2018
  • Apache Spark is one of the high performance in-memory computing frameworks for big-data processing. Recently, to improve the performance, general-purpose computing on graphics processing unit(GPGPU) is adapted to Apache Spark framework. Previous Spark-GPGPU frameworks focus on overcoming the difficulty of an implementation resulting from the difference between the computation environment of GPGPU and Spark framework. In this paper, we propose a Spark framework based on a heterogenous pipeline computing with OpenCL to further improve the performance. The proposed framework overlaps the Java-to-Native memory copies of CPU with CPU-GPU communications(DMA) and GPU kernel computations to hide the CPU idle time. Also, CPU-GPU communication buffers are implemented with switching dual buffers, which reduce the mapped memory region resulting in decreasing memory mapping overhead. Experimental results showed that the proposed Spark framework based on a heterogenous pipeline computing with OpenCL had up to 2.13 times faster than the previous Spark framework using OpenCL.

Real-time multi-GPU-based 8KVR stitching and streaming on 5G MEC/Cloud environments

  • Lee, HeeKyung;Um, Gi-Mun;Lim, Seong Yong;Seo, Jeongil;Gwak, Moonsung
    • ETRI Journal
    • /
    • 제44권1호
    • /
    • pp.62-72
    • /
    • 2022
  • In this study, we propose a multi-GPU-based 8KVR stitching system that operates in real time on both local and cloud machine environments. The proposed system first obtains multiple 4 K video inputs, decodes them, and generates a stitched 8KVR video stream in real time. The generated 8KVR video stream can be downloaded and rendered omnidirectionally in player apps on smartphones, tablets, and head-mounted displays. To speed up processing, we adopt group-of-pictures-based distributed decoding/encoding and buffering with the NV12 format, along with multi-GPU-based parallel processing. Furthermore, we develop several algorithms such as equirectangular projection-based color correction, real-time CG overlay, and object motion-based seam estimation and correction, to improve the stitching quality. From experiments in both local and cloud machine environments, we confirm the feasibility of the proposed 8KVR stitching system with stitching speed of up to 83.7 fps for six-channel and 62.7 fps for eight-channel inputs. In addition, in an 8KVR live streaming test on the 5G MEC/cloud, the proposed system achieves stable performances with 8 K@30 fps in both indoor and outdoor environments, even during motion.

OpenCL을 이용한 JPEG2000 4K 초고화질 영상처리의 병렬고속화 구현 (A Parallel Implementation of JPEG2000 4K Ultra High Definition Image using OpenCL)

  • 박대승;김정길
    • 한국위성정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.1-5
    • /
    • 2015
  • 멀티미디어 기술의 급속한 발전과 사용자의 대형 화면에 대한 선호도가 높아지는 가운데 새로운 영상 압축 기술인 HEVC(High Efficiency Video Coding) 고화질 영상 압축 표준을 탄생시켰으며, 그 결과 기존의 HD급 영상보다 4배 이상, 16배까지 선명한 초고화질 UHD(Ultra High Definition) 영상 서비스가 새롭게 주목받고 있다. 또한 JPEG 2000 압축도 기존 처리되던 픽셀 이미지를 넘어 초고화질 해상도 이미지(4K : $3,840{\times}2,160$ 또는 8K : $7680{\times}4320$)를 처리 지원을 하고 있다. 따라서 초고화질 이미지의 획득 및 저장을 위해서는 고속의 처리 기술이 필요하다. 이에 본 논문은 초고화질 해상도 이미지의 고속 처리를 위한 병렬처리 기술에 대한 연구를 위하여, JPEG 2000의 처리 과정을 살펴보고 전처리 단계인 색공간 변환 알고리즘 적용을 위하여 GPU환경에서 병렬 컴퓨팅을 통해 처리속도를 향상시키는 방법을 제안한다. 병렬화한 알고리즘의 구현은 OpenCL(Open Computing Language)을 이용하였다. 실험 결과 사용자 정의 쓰레드 기반 고속 처리와 비교하여 초고화질 해상도 이미지(UHD 4K : $3,840{\times}2,160$)를 기준으로 최대 5배의 성능 향상의 결과를 보여주었다.

GPGPU를 이용한 고속 영상 합성 기법 (Fast View Synthesis Using GPGPU)

  • 신홍창;박한훈;박종일
    • 방송공학회논문지
    • /
    • 제13권6호
    • /
    • pp.859-874
    • /
    • 2008
  • 본 논문은 3차원 디스플레이 시스템에서 카메라의 기하 정보 및 참조 영상들의 깊이 맵 정보가 주어졌을 때, 다수의 중간 시점 영상을 실시간으로 생성하는 고속 영상 합성 기법을 제안한다. 기본적으로 본 논문에서는 영상 합성 기법의 모든 과정을 GPU에 서 병렬 처리함으로써 고속화 할 수 있었다. 병렬처리를 이용한 고속화 효율을 높이기 위해 최근 NVIDIA사에서 발표한 $CUDA^{TM}$를 이용하였다. 영상 합성을 위한 모든 중간 과정을 CUDA로 처리하기 위해 병렬구조로 변환하고, GPU 상의 고속메모리의 사용을 극대화하고, 알고리즘 구현을 최적화함으로써 고속화 효율을 높일 수 있었다. 결과적으로 본 논문에서는 양안 영상과 깊이 지도를 이용하여 가로 720, 세로 480 크기의 9개의 시점 영상을 0.128초 이내에 생성할 수 있었다.