최근 그래픽 프로세서(GPU)의 발전에 따라 대량의 프로세서를 탑재한 고성능 그래픽 카드가 개인 컴퓨터에서 널리 사용되고 있다. GPU를 사용하여 CPU의 부하를 줄이면서도 성능을 향상시킬 수 있어서 복잡한 연산을 처리해야 하는 다양한 응용 프로그램에 적용하는 연구가 활발히 진행되고 있다. 본 논문에서는 복잡한 연산이 필요한 공간 데이터 처리의 성능을 향상시키기 위하여 GPU의 병렬 처리 기술을 활용하는 방법을 제안하였다. 원본 공간 데이터를 화면에 출력하기 위해서는 그래픽 처리 연산이 필요하며 같은 종류의 연산을 모든 데이터에 적용해야 하므로 GPU의 SIMD 병렬 처리를 사용하여 성능을 향상시킬 수 있다.
In a the present day, many vision inspection techniques are used in productive industrial areas. In particular, in the semiconductor industry the vision inspection system for wafers is a very important system. Also, inspection techniques for semiconductor wafer production are required to ensure high precision and fast inspection. In order to achieve these objectives, parallel processing of the inspection algorithm is essentially needed. In this paper, we propose the GPU (Graphical Processing Unit)-based parallel processing algorithm for the fast inspection of semiconductor wafers. The proposed algorithm is implemented on GPU boards made by NVIDIA Company. The defect detection performance of the proposed algorithm implemented on the GPU is the same as if by a single CPU, but the execution time of the proposed method is about 210 times faster than the one with a single CPU.
논문은 GPU를 이용한 무리 짓기에 대한 병렬 알고리즘을 제안한다. 이를 위하여 GPU의 병렬처리 구조로 CUDA를 사용하였으며, 그것의 특성 및 제한 요소들을 분석하였다. 이의 특성 및 제한 요소를 기초로 무리 짓기에서 가장 많은 비용을 요구하는 이웃 에이전트들을 찾는 것을 병렬화 함으로써 성능을 개선하였다. 제안된 알고리즘을 GTX 285상에서 구현하였고, 그것의 성능을 실험적으로 기존의 공간분할 알고리즘과 비교하였다. 비교의 결과는 제안된 알고리즘이 실행 시간 관점에서 최대 9배 정도 우수하다는 것을 보였다.
High resolution satellite images are now widely used for a variety of mapping applications including photogrammetry, GIS data acquisition and visualization. As the spectral and spatial data size of satellite images increases, a greater processing power is needed to process the images. The solution of these problems is parallel systems. Parallel processing techniques have been developed for improving the performance of image processing along with the development of the computational power. However, conventional CPU-based parallel computing is often not good enough for the demand for computational speed to process the images. The GPU is a good candidate to achieve this goal. Recently GPUs are used in the field of highly complex processing including many loop operations such as mathematical transforms, ray tracing. In this study we proposed a technique for parallel processing of high resolution satellite images using GPU. We implemented a spectral radiometric processing algorithm on Landsat-7 ETM+ imagery using CUDA, a parallel computing architecture developed by NVIDIA for GPU. Also performance of the algorithm on GPU and CPU is compared.
최근 고화질 영상의 증가와 더불어 대용량 영상 데이터의 처리는 높은 연산이 요구되어 병렬 처리 설계가 선택되고 있다. 영상 처리에서 나타나는 많은 단순 연산이 병렬처리 가능한 경우, CPU 기반 병렬처리보다는 GPU 기반 병렬처리를 적용하는 것이 계산문제의 시간과 공간 계산 복잡도를 줄일 수 있다. 본 논문은 영상에서 샷 경계 탐지 알고리즘의 병렬 설계와 구현을 연구하였다. 제안하는 샷 경계 탐지 알고리즘은 프레임 간 지역 화소 밝기 비교와 전역 히스토그램 정보를 이용하는데, 이들 데이터의 계산은 대량의 데이터에 대한 높은 병렬성을 갖는다. 이들 연산의 병렬처리를 최대화하기 위해 화소 밝기와 히스토그램의 계산을 NVIDIA GPU에서 병렬 설계 하였다. GPU 기반 샷 탐지 방법은 국가기록원에서 선택된 10개의 비디오 데이터에 대한 성능 테스트를 수행하였다. 테스트에서 GPU 기반 알고리즘의 탐지율은 CPU 기반 알고리즘과 유사하였으나 약 10배의 연산 속도가 개선되었다.
홀로그램의 생성을 위한 연산은 포인트 클라우드의 규모에 따라 연산량이 기하급수적으로 증가하기 때문에 최근에는 다중의 GPU를 기반으로 CUDA 또는 OpenCL 라이브러리를 활용한 병렬처리가 이루어지고 있다. GPU기반의 병렬처리를 위한 CUDA 커널은 GPU의 코어 개수와 메모리 크기를 고려하여 쓰레드(thread), 블록(block), 그리드(grid)를 구성해야 하며, 다중 GPU 환경인 경우 GPU의 개수에 따른 그리드, 블록, 또는 쓰레드 단위의 분산처리가 필요하다. 본 논문에서는 CGH 생성에 대한 성능평가를 위해 포인트 클라우드의 포인트 개수를 10~1,000,000개 범위에서 점진적으로 증가시키면서 CPU, 단일 GPU, 다중 GPU 환경에서 연산 속도를 비교해 보았으며, 다중 GPU 환경에서 CGH(Computer Generated Hologram) 생성 연산을 가속화하기 위한 CUDA 기반의 병렬처리 과정에서 요구되는 메모리 구조 설계와 연산 방법을 제안한다.
메쉬 평탄화는 메쉬 표면의 잡음을 제거하는 것으로써 일반적으로 평탄화 필터를 적용하여 수행한다. 하지만 전체 과정이 CPU에서 수행되기 때문에 많은 실행 시간이 걸리는 문제점을 가진다. GPU는 부동소수점 연산에 특화되어 CPU에 비해 빠른 연산이 가능하기 때문에 복잡한 연산을 실시간으로 처리하는 것이 가능하다. 특히 메쉬 평탄화 과정은 메쉬의 각 정점이나 삼각형을 기반으로 같은 연산을 반복하기 때문에 GPU의 병렬 처리에 적합하다. 본 논문에서는 양방향 필터링에 GPU의 병렬 처리를 이용함으로써 메쉬 평탄화의 수행 시간을 줄이는 방법을 제안한다. 먼저 양방향 필터링을 위해 메쉬의 각 정점에 인접하는 삼각형들을 찾고 이들의 법선 벡터의 평균을 계산하여 정점들의 법선 벡터를 구한다. 양방향 필터링으로 각 정점의 새 위치를 계산하고 앞의 과정을 다시 수행하여 정점들의 새 법선 벡터를 계산한다.
IEIE Transactions on Smart Processing and Computing
/
제6권3호
/
pp.210-219
/
2017
This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.
최근 HD급 동영상이나 3D 어플리케이션과 같은 이전보다 저사양, 모바일 단말에서는 구동하기 힘든 프로그램들에 대한 이용 요구가 확대되면서 처리해야 할 콘텐츠 데이터들이 고용량화 되고 있다. 클라우드 기반의 VDI(Virtual Desktop Infrastructure) 서비스는 이를 처리하기 위해 효율적인 데이터 처리 능력이 필요해졌으며 QoE(Quality of Experience) 보장을 위한 성능 개선 연구가 이슈가 되고 있다. 본 논문에서는 H/W 성능이 향상되어 CPU와 GPU를 탑재한 Thick Client기반의 3가지 Thick-Thin간 VDI 자원 공유 및 위임이 가능한 VDI 서비스에 대해 제안하며, VDI 서비스 성능의 개선을 위해 CPU와 GPU가 혼합된 Heterogeneous 멀티코어 환경에서 CPU와 GPU 병렬 처리 기법인 OpenMP와 CUDA를 활용하여 VDI 서비스 최적화 방안을 제안하고 기존의 VDI와 비교한 성능을 거론한다.
This paper presents a fast feature extraction method for autonomous mobile robots utilizing parallel processing and based on OpenMP, SSE (Streaming SIMD Extension) and CUDA programming. In the first step on CPU version, the algorithms and codes are optimized and then implemented by parallel processing. The parallel algorithms are debugged to maintain the same level of performance and the process for extracting key points and obtaining dominant orientation with respect to key points is parallelized. After extraction, a parallel descriptor via SSE instructions is constructed. And the GPU version also implemented by parallel processing using CUDA based on the SIFT. The GPU-Parallel descriptor achieves an acceleration up to five times compared with the CPU-Parallel descriptor, but it shows the lower performance than CPU version. CPU version also speed-up the four and half times compared with the original SIFT while maintaining robust performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.