• Title/Summary/Keyword: GPU Based CNN

Search Result 20, Processing Time 0.03 seconds

Deep Learning-Based Real-Time Pedestrian Detection on Embedded GPUs (임베디드 GPU에서의 딥러닝 기반 실시간 보행자 탐지 기법)

  • Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.357-360
    • /
    • 2019
  • We propose an efficient single convolutional neural network (CNN) for pedestrian detection on embedded GPUs. We first determine the optimal number of the convolutional layers and hyper-parameters for a lightweight CNN. Then, we employ a multi-scale approach to make the network robust to the sizes of the pedestrians in images. Experimental results demonstrate that the proposed algorithm is capable of real-time operation, while providing higher detection performance than conventional algorithms.

A Realization of CNN-based FPGA Chip for AI (Artificial Intelligence) Applications (합성곱 신경망 기반의 인공지능 FPGA 칩 구현)

  • Young Yun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.388-389
    • /
    • 2022
  • Recently, AI (Artificial Intelligence) has been applied to various technologies such as automatic driving, robot and smart communication. Currently, AI system is developed by software-based method using tensor flow, and GPU (Graphic Processing Unit) is employed for processing unit. However, if software-based method employing GPU is used for AI applications, there is a problem that we can not change the internal circuit of processing unit. In this method, if high-level jobs are required for AI system, we need high-performance GPU, therefore, we have to change GPU or graphic card to perform the jobs. In this work, we developed a CNN-based FPGA (Field Programmable Gate Array) chip to solve this problem.

  • PDF

Efficient Convolutional Neural Network with low Complexity (저연산량의 효율적인 콘볼루션 신경망)

  • Lee, Chanho;Lee, Joongkyung;Ho, Cong Ahn
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.685-690
    • /
    • 2020
  • We propose an efficient convolutional neural network with much lower computational complexity and higher accuracy based on MobileNet V2 for mobile or edge devices. The proposed network consists of bottleneck layers with larger expansion factors and adjusted number of channels, and excludes a few layers, and therefore, the computational complexity is reduced by half. The performance the proposed network is verified by measuring the accuracy and execution times by CPU and GPU using ImageNet100 dataset. In addition, the execution time on GPU depends on the CNN architecture.

Efficient Thread Allocation Method of Convolutional Neural Network based on GPGPU (GPGPU 기반 Convolutional Neural Network의 효율적인 스레드 할당 기법)

  • Kim, Mincheol;Lee, Kwangyeob
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.10
    • /
    • pp.935-943
    • /
    • 2017
  • CNN (Convolution neural network), which is used for image classification and speech recognition among neural networks learning based on positive data, has been continuously developed to have a high performance structure to date. There are many difficulties to utilize in an embedded system with limited resources. Therefore, we use GPU (General-Purpose Computing on Graphics Processing Units), which is used for general-purpose operation of GPU to solve the problem because we use pre-learned weights but there are still limitations. Since CNN performs simple and iterative operations, the computation speed varies greatly depending on the thread allocation and utilization method in the Single Instruction Multiple Thread (SIMT) based GPGPU. To solve this problem, there is a thread that needs to be relaxed when performing Convolution and Pooling operations with threads. The remaining threads have increased the operation speed by using the method used in the following feature maps and kernel calculations.

Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network (CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘)

  • Kim Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.4
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

Quad Tree Based 2D Smoke Super-resolution with CNN (CNN을 이용한 Quad Tree 기반 2D Smoke Super-resolution)

  • Hong, Byeongsun;Park, Jihyeok;Choi, Myungjin;Kim, Changhun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • Physically-based fluid simulation takes a lot of time for high resolution. To solve this problem, there are studies that make up the limitation of low resolution fluid simulation by using deep running. Among them, Super-resolution, which converts low-resolution simulation data to high resolution is under way. However, traditional techniques require to the entire space where there are no density data, so there are problems that are inefficient in terms of the full simulation speed and that cannot be computed with the lack of GPU memory as input resolution increases. In this paper, we propose a new method that divides and classifies 2D smoke simulation data into the space using the quad tree, one of the spatial partitioning methods, and performs Super-resolution only required space. This technique accelerates the simulation speed by computing only necessary space. It also processes the divided input data, which can solve GPU memory problems.

Development of a Flooding Detection Learning Model Using CNN Technology (CNN 기술을 적용한 침수탐지 학습모델 개발)

  • Dong Jun Kim;YU Jin Choi;Kyung Min Park;Sang Jun Park;Jae-Moon Lee;Kitae Hwang;Inhwan Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.1-7
    • /
    • 2023
  • This paper developed a training model to classify normal roads and flooded roads using artificial intelligence technology. We expanded the diversity of learning data using various data augmentation techniques and implemented a model that shows good performance in various environments. Transfer learning was performed using the CNN-based Resnet152v2 model as a pre-learning model. During the model learning process, the performance of the final model was improved through various parameter tuning and optimization processes. Learning was implemented in Python using Google Colab NVIDIA Tesla T4 GPU, and the test results showed that flooding situations were detected with very high accuracy in the test dataset.

Development of Hazardous Food Notification Application Using CNN Model (CNN 모델을 이용한 위해 식품 알림 애플리케이션의 개발)

  • Yoon, Dong Eon;Lee, Hyo Sang;Oh, Am Suk
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.461-467
    • /
    • 2022
  • This research is to raise awareness of food safety by designing and supporting a hazard food information notification platform for consumers. To this end, the design was carried out by dividing the process into a data extraction process, an application screen design process, and a CNN-based food inference process. Data was collected through public data APIs and crawling, and it was sent to each activity screen designed for Android studios so that it could be output. As a result, when the platform is executed, information on hazardous food names, registration dates, food classification, manufacturing dates, recovery grades, recovery reasons, recovery methods, company names, barcode numbers, and packaging units can be intuitively and conveniently checked. In addition, CNN-based food inference processes allowed mobile cameras to infer harmful food and applied various quantization techniques such as Dynamic Range, Integer, and Float16 to compare the degree of improvement in inference performance. As a result, the group that applied basic quantization and treated device resources with GPU showed the greatest improvement in inference performance. Through this platform, it is expected that the reliability of food safety will be improved by making it more convenient for consumers to recognize food risks.

Convolutional Neural Network with Particle Filter Approach for Visual Tracking

  • Tyan, Vladimir;Kim, Doohyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.693-709
    • /
    • 2018
  • In this paper, we propose a compact Convolutional Neural Network (CNN)-based tracker in conjunction with a particle filter architecture, in which the CNN model operates as an accurate candidates estimator, while the particle filter predicts the target motion dynamics, lowering the overall number of calculations and refines the resulting target bounding box. Experiments were conducted on the Online Object Tracking Benchmark (OTB) [34] dataset and comparison analysis in respect to other state-of-art has been performed based on accuracy and precision, indicating that the proposed algorithm outperforms all state-of-the-art trackers included in the OTB dataset, specifically, TLD [16], MIL [1], SCM [36] and ASLA [15]. Also, a comprehensive speed performance analysis showed average frames per second (FPS) among the top-10 trackers from the OTB dataset [34].

Enhanced Network Intrusion Detection using Deep Convolutional Neural Networks

  • Naseer, Sheraz;Saleem, Yasir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5159-5178
    • /
    • 2018
  • Network Intrusion detection is a rapidly growing field of information security due to its importance for modern IT infrastructure. Many supervised and unsupervised learning techniques have been devised by researchers from discipline of machine learning and data mining to achieve reliable detection of anomalies. In this paper, a deep convolutional neural network (DCNN) based intrusion detection system (IDS) is proposed, implemented and analyzed. Deep CNN core of proposed IDS is fine-tuned using Randomized search over configuration space. Proposed system is trained and tested on NSLKDD training and testing datasets using GPU. Performance comparisons of proposed DCNN model are provided with other classifiers using well-known metrics including Receiver operating characteristics (RoC) curve, Area under RoC curve (AuC), accuracy, precision-recall curve and mean average precision (mAP). The experimental results of proposed DCNN based IDS shows promising results for real world application in anomaly detection systems.