본 논문은 호스트(PC) 기반의 직렬처리 방식으로 도로영역 추출 방식에 디바이스(Graphic Card) 기반의 병렬 처리 방식을 추가함으로써 보다 향상된 처리 속도를 가지는 도로영역검출을 제안하였다. OpenCV CUDA는 기존의 OpenCV와 CUDA를 연동하여 병렬 처리 방식의 많은 함수들을 지원한다. 또한 OpenCV와 CUDA 연동 시 환경 설정이 완료된 OpenCV CUDA 함수들은 사용자의 디바이스(Graphic Card) 사양에 최적화된다. 따라서 OpenCV CUDA 사용은 알고리즘 검증 및 시뮬레이션 결과 도출의 용이성을 제공한다. 제안된 방법은 OpenCV CUDA 와 NVIDIA GeForce GTX 560 Ti 모델의 그래픽 카드를 사용하여 기존 방식보다 3.09배 빠른 처리 속도를 가짐을 실험을 통해 검증한다.
Compressive sensing 및 희소 복원 문제(sparse recovery problem)는 기존 디지털 기술의 한계를 극복할 수 있는 새로운 이론으로 많은 관심을 받고 있다. 그러나 신호 재구성에서 l1 norm 최적화 문제 해결에 많은 연산이 수행되며 따라서 병렬 처리 기법이 필요하다. 이 과정에서 무작위 행렬과 벡터 연산을 통한 변환 연산이 전체 과정 중에서 많은 부분을 차지하는데, 특히 원본 신호의 크기로 인해 이 과정에서 필요한 무작위 행렬을 메모리에 저장하기 곤란하며 계산 시 무작위 행렬의 절차적(procedural) 처리 방식이 필수적이다. 본 논문에서는 이 문제에 대한 해결책으로 단일 명령 다중 스레드(SIMT) 병렬 플랫폼 상에서 무작위 부분적 Haar 웨이블릿 변환을 절차적으로 계산할 수 있는 새로운 병렬 알고리듬을 제안한다.
본 연구는 자연어 처리 문제 중 하나인 문장 유사도 판별 문제를 딥러닝으로 해결하는 데에 있어 Char2Vec기반으로 문장을 전 처리하고 학습시켜 그 성능을 확인하고 대표적인 Word Embedding 모델 Word2Vec를 대체할 수 있는 가능성이 있는지 파악하고자 한다. 임의의 두 문장을 비교할 때 쓰는 딥러닝 구조로 Siamese Ma-STM 네트워크를 사용하였다. Word2Vec와 Char2Vec를 각각 기반으로 한 문장 유사도 판별 모델을 학습시키고 그 결과를 분석하였다. 실험 결과 Char2Vec를 기반으로 학습시킨 모델이 validation accuracy 75.1%을 보였고 Word2Vec를 기반으로 학습시킨 모델은 validation accuracy 71.6%를 보였다. 따라서 고 사양을 요구하는 Word2Vec대신 임베딩 레이어를 활용한 Char2Vec 기반의 전처리 모델을 활용함으로 분석 환경을 최적화 할 수 있다.
최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.
과거 인공지능 분야에서는 지식 기반의 전문가 시스템 및 머신러닝 알고리즘들을 금융 분야에 적용하는 연구가 꾸준하게 수행되어 왔다. 특히 주식에 대한 지식 기반의 시스템 트레이딩은 이제 보편화되었고, 최근에는 대용량 데이터에 기반한 딥러닝 기술을 주가 예측에 적용하기 시작했다. 이중 LSTM은 시계열 데이터에 대한 검증된 모델로서 주가 예측에도 적용되고 있다. 본 논문에서는 주가 예측 모델로서 LSTM을 적용할 때 성능향상을 위해 고려해야 할 복잡한 매개변수 설정과 적용 함수들에 대해 적합한 조합 방법을 제안하도록 한다. 크게 가중치와 바이어스에 대한 초기화 대상과 설정 방법, 과적합을 피하기 위한 정규화 적용 대상과 설정 방법, 활성화 함수 적용 방법, 최적화 알고리즘 선택 등을 제시한다. 이 때 나스닥 상장사들에 대한 대용량 데이터를 바탕으로 각각의 방법들을 적용하여 정확도를 비교하면서 평가한다. 이를 통해 주가 예측을 위한 LSTM 적용 시 최적의 모델링 방법을 실증적인 형태로 제안하여 현실적인 시사점을 갖도록 한다. 향후에는 입력 데이터의 포맷과 길이, 하이퍼파라미터들에 대한 성능평가를 추가 수행하여 주요 설정 항목들의 조합에 대한 일반화 연구를 수행하고자 한다.
최근 들어 늘어나고 있는 도시기상에 대한 미래수요 활용 방안을 위해 적합한 관측과 모델 분야의 고려요소와 기획연구 방향에 대해서 관측과 모델, 공간정보 활용 방안에 대해서 확인하였다. 도시기상 관측의 높은 공간해상도 요구사항을 기존 종관기상 관측망을 통해서 만족하기가 어려우며, 사용하고 있는 기존 측기의 유지 관리에 대해서 어려움이 높을 것으로 예상되기 때문에 기존측기보다 소형화된 간이 측정기를 통해 공간해상도를 보완함과 동시에 간이측기의 장기 검보정을 위한 도시규모별 유, 무인의 검보정 시스템이 필요할 것으로 보인다. 또한 UAM과 같은 차세대 교통체계의 실용화 등의 운용방안에 맞춘 기상정보 지원을 위해서 영공을 포함한 도시 지역 예보가 필요할 것으로 보인다. 이를 위해 복잡한 도시의 지면 효과를 반영하는 빌딩 규모 모델의 개발이 필요하며, 이에 대해서 중규모모델과 LES의 결합이 된 다중스케일 모델 개발 과 개선이 필요할 것으로 보인다. 추가적으로 이러한 다중스케일 모델의 연산속도 향상과 성능 개선을 위해서 GPU 등을 이용하여 모델 계산속도를 높이는 노력이 필요할 것으로 예상된다. 이러한 관측과 모델의 정보를 공간정보로 활용하기 위한 방안은 최종적으로 소규모 지역의 고해상도 실시간 기상정보를 제공하여 기상자원정보의 시너지 향상과 도시생활의 시너지 효과를 이루어낼 수 있는 정보 활용이 될 수 있을 것으로 예상된다. 스마트시티에 대한 기상자원의 활용과 융합에 대해서 국내 스마트시티 계획 지역인 부산과 세종의 현재 구축된 자료를 이용하여 그 융합을 사례 적용하였다. 특히 교통에 영향을 많이 줄 것으로 보이는 안개에 대해서 실제 과거 발생일수의 분석을 통해 스마트시티 지역 내에서 발생할 수 있는 재난 상황을 판단하고, 지역별 지형 및 기상 특성을 고려하여 관측과 예보에 필수적인 기상 인자를 최적화하고, 도시계획 과정에서 관측소의 최적입지를 선정하여 기존 도시인프라와의 융합 활용을 통해 도시기상자료를 고해상도로 구축하는 방안이 필요할 것으로 보인다.
최근 근접 치료에서 방사선 차폐막을 사용하여 선량 분포를 변조하여 선량을 전달하는 정적 및 동적 변조 근접 치료 방법이 개발됨에 따라 새로운 방향성 빔 세기 변조 근접 치료에 적합한 역방향 치료 계획 및 치료 계획 최적화 알고리즘에서 선량 계산에 필요한 파라미터 및 데이터의 양이 증가하고 있다. 세기 변조 근접 치료는 방사선의 정확한 선량 전달이 가능하지만, 파라미터와 데이터의 양이 증가하기 때문에 선량 계산에 필요한 경과 시간이 증가한다. 본 연구에서는 선량 계산 경과 시간의 증가를 줄이기 위해 그래픽 카드 기반의 CUDA 가속 선량 계산 알고리즘을 구축하였다. 계산 과정의 가속화 방법은 관심 체적의 시스템 행렬 계산 및 선량 계산의 병렬화를 이용하여 진행하였다. 개발된 알고리즘은 모두 인텔(3.7GHz, 6코어) CPU와 단일 NVIDIA GTX 1080ti 그래픽 카드가 장착된 동일한 컴퓨팅 환경에서 수행하였으며, 선량 계산 시간은 디스크에서 데이터를 불러오고 전처리를 위한 작업 등의 추가 적으로 필요한 시간은 제외하고 선량 계산 시간만 측정하여 평가하였다. 그 결과 가속화된 알고리즘은 CPU로만 계산할 때보다 선량 계산 시간이 약 30배 단축된 것으로 나타났다. 가속화된 선량 계산 알고리즘은 적응방사선치료와 같이 매일 변화되는 어플리케이터의 움직임을 고려하여 새로운 치료 계획을 수립해야 하는 경우나 동적 변조 근접 치료와 같이 선량 계산에 변화되는 파라미터를 고려해야 하는 경우 치료 계획 수립 속도를 높일 수 있을 것으로 판단된다.
언어모델은 순차적으로 입력된 자료를 바탕으로 다음에 나올 단어나 문자를 예측하는 모델로 언어처리나 음성인식 분야에 활용된다. 최근 딥러닝 알고리즘이 발전되면서 입력 개체 간의 의존성을 효과적으로 반영할 수 있는 순환신경망 모델과 이를 발전시킨 Long short-term memory(LSTM) 모델이 언어모델에 사용되고 있다. 이러한 모형에 자료를 입력하기 위해서는 문장을 단어 혹은 형태소로 분해하는 과정을 거친 후 단어 레벨 혹은 형태소 레벨의 모형을 사용하는 것이 일반적이다. 하지만 이러한 모형은 텍스트가 포함하는 단어나 형태소의 수가 일반적으로 매우 많기 때문에 사전 크기가 커지게 되고 이에 따라 모형의 복잡도가 증가하는 문제가 있고 사전에 포함된 어휘 외에는 생성이 불가능하다는 등의 단점이 있다. 특히 한국어와 같이 형태소 활용이 다양한 언어의 경우 형태소 분석기를 통한 분해과정에서 오류가 더해질 수 있다. 이를 보완하기 위해 본 논문에서는 문장을 자음과 모음으로 이루어진 음소 단위로 분해한 뒤 입력 데이터로 사용하는 음소 레벨의 LSTM 언어모델을 제안한다. 본 논문에서는 LSTM layer를 3개 또는 4개 포함하는 모형을 사용한다. 모형의 최적화를 위해 Stochastic Gradient 알고리즘과 이를 개선시킨 다양한 알고리즘을 사용하고 그 성능을 비교한다. 구약성경 텍스트를 사용하여 실험을 진행하였고 모든 실험은 Theano를 기반으로 하는 Keras 패키지를 사용하여 수행되었다. 모형의 정량적 비교를 위해 validation loss와 test set에 대한 perplexity를 계산하였다. 그 결과 Stochastic Gradient 알고리즘이 상대적으로 큰 validation loss와 perplexity를 나타냈고 나머지 최적화 알고리즘들은 유사한 값들을 보이며 비슷한 수준의 모형 복잡도를 나타냈다. Layer 4개인 모형이 3개인 모형에 비해 학습시간이 평균적으로 69% 정도 길게 소요되었으나 정량지표는 크게 개선되지 않거나 특정 조건에서는 오히려 악화되는 것으로 나타났다. 하지만 layer 4개를 사용한 모형이 3개를 사용한 모형에 비해 완성도가 높은 문장을 생성했다. 본 논문에서 고려한 어떤 시뮬레이션 조건에서도 한글에서 사용되지 않는 문자조합이 생성되지 않았고 명사와 조사의 조합이나 동사의 활용, 주어 동사의 결합 면에서 상당히 완성도 높은 문장이 발생되었다. 본 연구결과는 현재 대두되고 있는 인공지능 시스템의 기초가 되는 언어처리나 음성인식 분야에서 한국어 처리를 위해 다양하게 활용될 수 있을 것으로 기대된다.
딥러닝은 인공신경망(neural network)이라는 인공지능분야의 모형이 발전된 형태로서, 계층구조로 이루어진 인공신경망의 내부계층(hidden layer)이 여러 단계로 이루어진 구조이다. 딥러닝에서의 주요 모형은 합성곱신경망(convolutional neural network), 순환신경망(recurrent neural network), 그리고 심층신뢰신경망(deep belief network)의 세가지라고 할 수 있다. 그 중에서 현재 흥미로운 연구가 많이 발표되어서 관심이 집중되고 있는 모형은 지도학습(supervised learning)모형인 처음 두 개의 모형이다. 따라서 본 논문에서는 지도학습모형의 가중치를 최적화하는 기본적인 방법인 오류역전파 알고리즘을 살펴본 뒤에 합성곱신경망과 순환신경망의 구조와 응용사례 등을 살펴보고자 한다. 본문에서 다루지 않은 모형인 심층신뢰신경망은 아직까지는 합성곱신경망 이나 순환신경망보다는 상대적으로 주목을 덜 받고 있다. 그러나 심층신뢰신경망은 CNN이나 RNN과는 달리 비지도학습(unsupervised learning)모형이며, 사람이나 동물은 관찰을 통해서 스스로 학습한다는 점에서 궁극적으로는 비지도학습모형이 더 많이 연구되어야 할 주제가 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.