• Title/Summary/Keyword: GPU(Graphic Processing Unit) Processing

Search Result 81, Processing Time 0.022 seconds

The Need of Cache Partitioning on Shared Cache of Integrated Graphics Processor between CPU and GPU (내장형 GPU 환경에서 CPU-GPU 간의 공유 캐시에서의 캐시 분할 방식의 필요성)

  • Sung, Hanul;Eom, Hyeonsang;Yeom, HeonYoung
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.9
    • /
    • pp.507-512
    • /
    • 2014
  • Recently, Distributed computing processing begins using both CPU(Central processing unit) and GPU(Graphic processing unit) to improve the performance to overcome darksilicon problem which cannot use all of the transistors because of the electric power limitation. There is an integrated graphics processor that CPU and GPU share memory and Last level cache(LLC). But, There is no LLC access rules between CPU and GPU, so if GPU and CPU processes run together at the same time, performance of both processes gets worse because of the contention on the LLC. This Paper gives evidence to prove the need of the Cache Partitioning and is mentioned about the cache partitioning design using page coloring to allocate the L3 Cache space only for the GPU process to guarantee GPU process performance.

Software-based Real-time GNSS Signal Generation and Processing Using a Graphic Processing Unit (GPU)

  • Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • A graphic processing unit (GPU) can perform the same calculation on multiple data (SIMD: single instruction multiple data) using hundreds of to thousands of special purpose processors for graphic processing. Thus, high efficiency is expected when GPU is used for the generation and correlation of satellite navigation signals, which perform generation and processing by applying the same calculation procedure to tens of millions of discrete signal samples per second. In this study, the structure of a GPU-based GNSS simulator for the generation and processing of satellite navigation signals was designed, developed, and verified. To verify the developed satellite navigation signal generator, generated signals were applied to the OEM-V3 receiver of Novatel Inc., and the measured values were examined. To verify the satellite navigation signal processor, the performance was examined by collecting and processing actual GNSS intermediate frequency signals. The results of the verification indicated that satellite navigation signals could be generated and processed in real time using two GPUs.

Accelerating Depth Image-Based Rendering Using GPU (GPU를 이용한 깊이 영상기반 렌더링의 가속)

  • Lee, Man-Hee;Park, In-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.11
    • /
    • pp.853-858
    • /
    • 2006
  • In this paper, we propose a practical method for hardware-accelerated rendering of the depth image-based representation(DIBR) of 3D graphic object using graphic processing unit(GPU). The proposed method overcomes the drawbacks of the conventional rendering, i.e. it is slow since it is hardly assisted by graphics hardware and surface lighting is static. Utilizing the new features of modem GPU and programmable shader support, we develop an efficient hardware-accelerating rendering algorithm of depth image-based 3D object. Surface rendering in response of varying illumination is performed inside the vertex shader while adaptive point splatting is performed inside the fragment shader. Experimental results show that the rendering speed increases considerably compared with the software-based rendering and the conventional OpenGL-based rendering method.

3D Holographic Image Recognition by Using Graphic Processing Unit

  • Lee, Jeong-A;Moon, In-Kyu;Liu, Hailing;Yi, Faliu
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.264-271
    • /
    • 2011
  • In this paper we examine and compare the computational speeds of three-dimensional (3D) object recognition by use of digital holography based on central unit processing (CPU) and graphic processing unit (GPU) computing. The holographic fringe pattern of a 3D object is obtained using an in-line interferometry setup. The Fourier matched filters are applied to the complex image reconstructed from the holographic fringe pattern using a GPU chip for real-time 3D object recognition. It is shown that the computational speed of the 3D object recognition using GPU computing is significantly faster than that of the CPU computing. To the best of our knowledge, this is the first report on comparisons of the calculation time of the 3D object recognition based on the digital holography with CPU vs GPU computing.

Accelerating the Sweep3D for a Graphic Processor Unit

  • Gong, Chunye;Liu, Jie;Chen, Haitao;Xie, Jing;Gong, Zhenghu
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.63-74
    • /
    • 2011
  • As a powerful and flexible processor, the Graphic Processing Unit (GPU) can offer a great faculty in solving many high-performance computing applications. Sweep3D, which simulates a single group time-independent discrete ordinates (Sn) neutron transport deterministically on 3D Cartesian geometry space, represents the key part of a real ASCI application. The wavefront process for parallel computation in Sweep3D limits the concurrent threads on the GPU. In this paper, we present multi-dimensional optimization methods for Sweep3D, which can be efficiently implemented on the finegrained parallel architecture of the GPU. Our results show that the overall performance of Sweep3D on the CPU-GPU hybrid platform can be improved up to 4.38 times as compared to the CPU-based implementation.

Design of a SIMT architecture GP-GPU Using Tile based on Graphic Pipeline Structure (타일 기반 그래픽 파이프라인 구조를 사용한 SIMT 구조 GP-GPU 설계)

  • Kim, Do-Hyun;Kim, Chi-Yong
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.75-81
    • /
    • 2016
  • This paper proposes a design of the tile based on graphic pipeline to improve the graphic application performance in SIMT based GP-GPU. The proposed Tile based on graphics pipeline avoids unnecessary graphic processing operation, and processes the rasterization step in parallel. The massive data processing in parallel through SIMT architecture improve the computational performance, thereby improving the 3D graphic pipeline performance. The more vertex data of 3D model, the higher performance. The proposed structure was confirmed to improve processing performance of up to 3 times from about 1.18 times as compared to 'RAMP' and previous studies.

Fast Generation of Digital Hologram Based on Multi-GPU (Multi-GPU 기반의 고속 디지털 홀로그램 생성)

  • Song, Joong-Seok;Park, Jung-Sik;Seo, Young-Ho;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1009-1017
    • /
    • 2011
  • Fast generation of digital hologram is of importance for real-time holography broadcasting. In this paper, we propose such a method that parallelizes the Computer-Generated Holography (CGH) algorithm for digital hologram generation and make it faster using Multi Graphic Processing Unit (Multi-GPU) with help of the Compute Unified Device Architecture (CUDA) and the Open Multi-Processing (OpenMP). In addition, we propose optimization methods such as fixation variable, vectorization, and loop unrolling for making the CGH algorithm much faster. Experimental results show that our method is about 9,700 times faster than a CPU-based one.

Accelerating Numerical Analysis of Reynolds Equation Using Graphic Processing Units (그래픽처리장치를 이용한 레이놀즈 방정식의 수치 해석 가속화)

  • Myung, Hun-Joo;Kang, Ji-Hoon;Oh, Kwang-Jin
    • Tribology and Lubricants
    • /
    • v.28 no.4
    • /
    • pp.160-166
    • /
    • 2012
  • This paper presents a Reynolds equation solver for hydrostatic gas bearings, implemented to run on graphics processing units (GPUs). The original analysis code for the central processing unit (CPU) was modified for the GPU by using the compute unified device architecture (CUDA). The red-black Gauss-Seidel (RBGS) algorithm was employed instead of the original Gauss-Seidel algorithm for the iterative pressure solver, because the latter has data dependency between neighboring nodes. The implemented GPU program was tested on the nVidia GTX580 system and compared to the original CPU program on the AMD Llano system. In the iterative pressure calculation, the implemented GPU program showed 20-100 times faster performance than the original CPU codes. Comparison of the wall-clock times including all of pre/post processing codes showed that the GPU codes still delivered 4-12 times faster performance than the CPU code for our target problem.

Real-Time Object Segmentation in Image Sequences (연속 영상 기반 실시간 객체 분할)

  • Kang, Eui-Seon;Yoo, Seung-Hun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.173-180
    • /
    • 2011
  • This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.

A Realization of CNN-based FPGA Chip for AI (Artificial Intelligence) Applications (합성곱 신경망 기반의 인공지능 FPGA 칩 구현)

  • Young Yun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.388-389
    • /
    • 2022
  • Recently, AI (Artificial Intelligence) has been applied to various technologies such as automatic driving, robot and smart communication. Currently, AI system is developed by software-based method using tensor flow, and GPU (Graphic Processing Unit) is employed for processing unit. However, if software-based method employing GPU is used for AI applications, there is a problem that we can not change the internal circuit of processing unit. In this method, if high-level jobs are required for AI system, we need high-performance GPU, therefore, we have to change GPU or graphic card to perform the jobs. In this work, we developed a CNN-based FPGA (Field Programmable Gate Array) chip to solve this problem.

  • PDF