• Title/Summary/Keyword: GPT-2 모델

Search Result 85, Processing Time 0.024 seconds

Speaker classification and prediction with language model (언어모델을 활용한 문서 내 발화자 예측 분류 모델)

  • Kim, Gyeongmin;Han, Seunggyu;Seo, Jaehyung;Lee, Chanhee;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.317-320
    • /
    • 2020
  • 연설문은 구어체와 문어체 두 가지 특성을 모두 갖고 있는 복합적인 데이터 형태이다. 발화자의 문장 표현, 배열, 그리고 결합에 따라 그 구조가 다르기 때문에, 화자 별 갖는 문체적 특성 또한 모두 다르다. 국정을 다루는 정치인들의 연설문은 국정 현황을 포함한 다양한 주요 문제점을 다룬다. 그러면 발화자의 문서 내 문체적 특성을 고려할 경우, 해당 문서가 어느 정치인의 연설문인지 파악 할 수 있는가? 본 연구에서는 대한민국 정책 브리핑 사이트로부터 한국어 기반 사전 학습된 언어 모델을 활용하여 연설문에 대한 미세조정을 진행함으로써 발화자 예측 분류 모델을 생성하고, 그 가능성을 입증하고자 한다. 본 연구는 5-cross validation으로 모델 성능을 평가하였고 KoBERT, KoGPT2 모델에서 각각 90.22%, 84.41% 정확도를 보였다.

  • PDF

Analyzing Mathematical Performances of ChatGPT: Focusing on the Solution of National Assessment of Educational Achievement and the College Scholastic Ability Test (ChatGPT의 수학적 성능 분석: 국가수준 학업성취도 평가 및 대학수학능력시험 수학 문제 풀이를 중심으로)

  • Kwon, Oh Nam;Oh, Se Jun;Yoon, Jungeun;Lee, Kyungwon;Shin, Byoung Chul;Jung, Won
    • Communications of Mathematical Education
    • /
    • v.37 no.2
    • /
    • pp.233-256
    • /
    • 2023
  • This study conducted foundational research to derive ways to use ChatGPT in mathematics education by analyzing ChatGPT's responses to questions from the National Assessment of Educational Achievement (NAEA) and the College Scholastic Ability Test (CSAT). ChatGPT, a generative artificial intelligence model, has gained attention in various fields, and there is a growing demand for its use in education as the number of users rapidly increases. To the best of our knowledge, there are very few reported cases of educational studies utilizing ChatGPT. In this study, we analyzed ChatGPT 3.5 responses to questions from the three-year National Assessment of Educational Achievement and the College Scholastic Ability Test, categorizing them based on the percentage of correct answers, the accuracy of the solution process, and types of errors. The correct answer rates for ChatGPT in the National Assessment of Educational Achievement and the College Scholastic Ability Test questions were 37.1% and 15.97%, respectively. The accuracy of ChatGPT's solution process was calculated as 3.44 for the National Assessment of Educational Achievement and 2.49 for the College Scholastic Ability Test. Errors in solving math problems with ChatGPT were classified into procedural and functional errors. Procedural errors referred to mistakes in connecting expressions to the next step or in calculations, while functional errors were related to how ChatGPT recognized, judged, and outputted text. This analysis suggests that relying solely on the percentage of correct answers should not be the criterion for assessing ChatGPT's mathematical performance, but rather a combination of the accuracy of the solution process and types of errors should be considered.

Image captioning and video captioning using Transformer (Transformer를 사용한 이미지 캡셔닝 및 비디오 캡셔닝)

  • Gi-Duk Kim;Geun-Hoo Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.303-305
    • /
    • 2023
  • 본 논문에서는 트랜스포머를 사용한 이미지 캡셔닝 방법과 비디오 캡셔닝 방법을 제안한다. 트랜스포머의 입력으로 사전 학습된 이미지 클래스 분류모델을 거쳐 추출된 특징을 트랜스포머의 입력으로 넣고 인코더-디코더를 통해 이미지와 비디오의 캡션을 출력한다. 이미지 캡셔닝의 경우 한글 데이터 세트를 학습하여 한글 캡션을 출력하도록 학습하였으며 비디오 캡셔닝의 경우 MSVD 데이터 세트를 학습하여 학습 후 출력 캡션의 성능을 다른 비디오 캡셔닝 모델의 성능과 비교하였다. 비디오 캡셔닝에서 성능향상을 위해 트랜스포머의 디코더를 변형한 GPT-2를 사용하였을 때 BLEU-1 점수가 트랜스포머의 경우 0.62, GPT-2의 경우 0.80으로 성능이 향상됨을 확인하였다

  • PDF

Research on Lyric Generation conditioned on Accompaniment using T5 (T5 모델을 활용한 반주 기반 가사 생성 기법에 관한 연구)

  • Gi-Tae Jang;Tae-Heon Jin;Doo-Sang Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.574-575
    • /
    • 2024
  • 본 논문은 T5(Text-To-Text Transfer Transformer) 모델을 활용한 반주 기반 가사 생성 기법을 제안하였다. 텍스트 이벤트 형식으로 변환한 정제된 반주를 "가사 생성" Task Token과 같이 T5에 적용하여 입력된 반주에 상응하는 가사를 생성하는 방식이다. 본 논문에서 제안한 방식의 성능 검증을 위해 Transformer, GPT-2, BART를 이용하여 가사를 생성한 출력물을 BLEU(Bilingual Evaluation Understudy) 값과 감정분석 일치도(Emotion Analysis Consistency) 결과값을 통해 비교 평가하였다. 본 논문에서 제안한 T5를 이용한 방식이 Transformer, GPT-2, BART를 사용하는 방식보다 우수한 결과를 얻었다.

QA Pair Passage RAG-based LLM Korean chatbot service (QA Pair Passage RAG 기반 LLM 한국어 챗봇 서비스)

  • Joongmin Shin;Jaewwook Lee;Kyungmin Kim;Taemin Lee;Sungmin Ahn;JeongBae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.683-689
    • /
    • 2023
  • 자연어 처리 분야는 최근에 큰 발전을 보였으며, 특히 초대규모 언어 모델의 등장은 이 분야에 큰 영향을 미쳤다. GPT와 같은 모델은 다양한 NLP 작업에서 높은 성능을 보이고 있으며, 특히 챗봇 분야에서 중요하게 다루어지고 있다. 하지만, 이러한 모델에도 여러 한계와 문제점이 있으며, 그 중 하나는 모델이 기대하지 않은 결과를 생성하는 것이다. 이를 해결하기 위한 다양한 방법 중, Retrieval-Augmented Generation(RAG) 방법이 주목받았다. 이 논문에서는 지식베이스와의 통합을 통한 도메인 특화형 질의응답 시스템의 효율성 개선 방안과 벡터 데이터 베이스의 수정을 통한 챗봇 답변 수정 및 업데이트 방안을 제안한다. 본 논문의 주요 기여는 다음과 같다: 1) QA Pair Passage RAG을 활용한 새로운 RAG 시스템 제안 및 성능 향상 분석 2) 기존의 LLM 및 RAG 시스템의 성능 측정 및 한계점 제시 3) RDBMS 기반의 벡터 검색 및 업데이트를 활용한 챗봇 제어 방법론 제안

  • PDF

A Study on Development of User-Customerized English Translation Service Using ChatGPT (ChatGPT 를 활용한 사용자 맞춤형 영번역 서비스 개발)

  • Rae-Hyun Jung;Gye-Hyun Park;Eun-Jin Lee;Sang-Mi Lee;Sung-Kyu Shin
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.818-819
    • /
    • 2023
  • 본 연구는 ICT 기술의 발전과 온라인 정보량 증가에 따른 개인화된 통번역 수요를 충족시키기 위한 새로운 AI 번역 서비스를 제안한다. ChatGPT 의 생성 기능을 활용하여 사용자의 요구사항을 반영한 맞춤형 번역을 제공하며, 사용자와 실시간 피드백을 주고받는 것이 가능하다. 이로써 번역 과정의 자동화와 사용자 맞춤형 번역 경험을 실현할 수 있다. 더불어 AI 기술이 2 차적인 서비스 모델 개발을 촉진하고, 다양한 사용자 니즈를 충족하는 신규 시장을 개척할 수 있음을 시사한다.

Performance Evaluation of Pre-trained Language Models in Multi-Goal Conversational Recommender Systems (다중목표 대화형 추천시스템을 위한 사전 학습된 언어모델들에 대한 성능 평가)

  • Taeho Kim;Hyung-Jun Jang;Sang-Wook Kim
    • Smart Media Journal
    • /
    • v.12 no.6
    • /
    • pp.35-40
    • /
    • 2023
  • In this study paper, we examine pre-trained language models used in Multi-Goal Conversational Recommender Systems (MG-CRS), comparing and analyzing their performances of various pre-trained language models. Specifically, we investigates the impact of the sizes of language models on the performance of MG-CRS. The study targets three types of language models - of BERT, GPT2, and BART, and measures and compares their accuracy in two tasks of 'type prediction' and 'topic prediction' on the MG-CRS dataset, DuRecDial 2.0. Experimental results show that all models demonstrated excellent performance in the type prediction task, but there were notable provide significant performance differences in performance depending on among the models or based on their sizes in the topic prediction task. Based on these findings, the study provides directions for improving the performance of MG-CRS.

A Model to Automatically Generate Non-verbal Expression Information for Korean Utterance Sentence (한국어 발화 문장에 대한 비언어 표현 정보를 자동으로 생성하는 모델)

  • Jaeyoon Kim;Jinyea Jang;San Kim;Minyoung Jung;Hyunwook Kang;Saim Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.91-94
    • /
    • 2023
  • 자연스러운 상호작용이 가능한 인공지능 에이전트를 개발하기 위해서는 언어적 표현뿐 아니라, 비언어적 표현 또한 고려되어야 한다. 본 논문에서는 한국어 발화문으로부터 비언어적 표현인 모션을 생성하는 연구를 소개한다. 유튜브 영상으로부터 데이터셋을 구축하고, Text to Motion의 기존 모델인 T2M-GPT와 이종 모달리티 데이터를 연계 학습한 VL-KE-T5의 언어 인코더를 활용하여 구현한 모델로 실험을 진행하였다. 실험 결과, 한국어 발화 텍스트에 대해 생성된 모션 표현은 FID 스코어 0.11의 성능으로 나타났으며, 한국어 발화 정보 기반 비언어 표현 정보 생성의 가능성을 보여주었다.

  • PDF

Development of a customized GPTs-based chatbot for pre-service teacher education and analysis of its educational performance in mathematics (GPTs 기반 예비 교사 교육 맞춤형 챗봇 개발 및 수학교육적 성능 분석)

  • Misun Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • The rapid advancement of generative AI has ushered in an era where anyone can create and freely utilize personalized chatbots without the need for programming expertise. This study aimed to develop a customized chatbot based on OpenAI's GPTs for the purpose of pre-service teacher education and to analyze its educational performance in mathematics as assessed by educators guiding pre-service teachers. Responses to identical questions from a general-purpose chatbot (ChatGPT), a customized GPTs-based chatbot, and an elementary mathematics education expert were compared. The expert's responses received an average score of 4.52, while the customized GPTs-based chatbot received an average score of 3.73, indicating that the latter's performance did not reach the expert level. However, the customized GPTs-based chatbot's score, which was close to "adequate" on a 5-point scale, suggests its potential educational utility. On the other hand, the general-purpose chatbot, ChatGPT, received a lower average score of 2.86, with feedback indicating that its responses were not systematic and remained at a general level, making it less suitable for use in mathematics education. Despite the proven educational effectiveness of conventional customized chatbots, the time and cost associated with their development have been significant barriers. However, with the advent of GPTs services, anyone can now easily create chatbots tailored to both educators and learners, with responses that achieve a certain level of mathematics educational validity, thereby offering effective utilization across various aspects of mathematics education.

A BERGPT-chatbot for mitigating negative emotions

  • Song, Yun-Gyeong;Jung, Kyung-Min;Lee, Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.53-59
    • /
    • 2021
  • In this paper, we propose a BERGPT-chatbot, a domestic AI chatbot that can alleviate negative emotions based on text input such as 'Replika'. We made BERGPT-chatbot into a chatbot capable of mitigating negative emotions by pipelined two models, KR-BERT and KoGPT2-chatbot. We applied a creative method of giving emotions to unrefined everyday datasets through KR-BERT, and learning additional datasets through KoGPT2-chatbot. The development background of BERGPT-chatbot is as follows. Currently, the number of people with depression is increasing all over the world. This phenomenon is emerging as a more serious problem due to COVID-19, which causes people to increase long-term indoor living or limit interpersonal relationships. Overseas artificial intelligence chatbots aimed at relieving negative emotions or taking care of mental health care, have increased in use due to the pandemic. In Korea, Psychological diagnosis chatbots similar to those of overseas cases are being operated. However, as the domestic chatbot is a system that outputs a button-based answer rather than a text input-based answer, when compared to overseas chatbots, domestic chatbots remain at a low level of diagnosing human psychology. Therefore, we proposed a chatbot that helps mitigating negative emotions through BERGPT-chatbot. Finally, we compared BERGPT-chatbot and KoGPT2-chatbot through 'Perplexity', an internal evaluation metric for evaluating language models, and showed the superity of BERGPT-chatbot.