• Title/Summary/Keyword: GPSS/H

Search Result 5, Processing Time 0.015 seconds

Simulation of Truck-Loader Haulage Systems in an Underground Mine using GPSS/H (GPSS/H를 이용한 지하광산 트럭-로더 운반 시스템 시뮬레이션)

  • Park, Sebeom;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.430-439
    • /
    • 2014
  • This study developed a simulation program for truck-loader haulage systems in an underground mine. A limestone underground mine in Korea was selected as a study area and investigated to design the simulation algorithm for truck-loader haulage systems. GPSS/H simulation language was utilized to develop the simulation program. Simulations were conducted to analyze the optimal number of haulage trucks dispatched in the 540 ML loading point by using the developed program. The simulation results showed that 8 trucks can maximize the daily production (2,076 ton). The real production (1,850 ton/day) of limestone ores was very similar to the simulated one (1,850.35 ton/day) when considers 7 trucks dispatched in the 540 ML loading point. In addition, average waiting time at loader were similar (waiting time by time study : 1.39 min, simulated waiting time : 1.35 min).

A study on the Implementation of Graphic-based Power System Simulator for large-scale power system (Graphic-based Power System Simulator의 대규모 전력계통 적용에 관한 연구)

  • Shin, M.C.;Kim, K.J.;Park, C.W.;Park, H.K.;Rhee, B.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.50-52
    • /
    • 2002
  • GPSS(Graphic-based Power System Simulator) had been introduced before in an ex-thesis. GPSS is a Power System Simulator that is designed to provide friendly and highly interactive Graphic User Interface (GUI). In this Paper, GPSS was improved not for the education or the test, but as the instrument for a large-scale systematic analysis. To limit the difference between a theory and practical affairs, we reformed and added a lot of functions to the GPSS. And we have verified the real-systematic data.

  • PDF

Development of a Windows-based Program for Discrete Event Simulation of Truck-Loader Haulage Systems in an Underground Mine (지하광산 트럭-로더 운반시스템의 이산 사건 시뮬레이션을 위한 Windows용 프로그램 개발)

  • Choi, Yosoon;Park, Sebeom;Lee, Sung-Jae;Baek, Jieun;Jung, Jihoo;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2016
  • We developed a Windows-based program for discrete event simulation of truck-loader haulage systems in an underground mine. The Daesung MDI limestone mine located in Samcheok City, Gangwon Province, Korea was selected as the study area to design the program. The developed program is composed of the graphic user interface (GUI) and simulation engine implemented by Visual Basic.NET 2012 and the GPSS/H simulation language, respectively. When a user sets up input parameters for the discrete event simulation through GUI, the program activates the simulation engine, and then simulation results are displayed on GUI. This paper describes the details of the program development as well as its applications to the study area to determine the optimal number of trucks dispatched at each loading point under different operating conditions.

Development of a Windows-based Simulation Program for Selecting Equipments in Open-pit Shovel-Truck Haulage Systems (노천광산 쇼밸-트럭 운반 시스템의 장비선택을 위한 Windows용 시뮬레이션 프로그램 개발)

  • Park, Sebeom;Lee, Sungjae;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • This study developed a Windows-based simulation program for selecting equipments in open-pit shovel-truck haulage systems. Visual Basic.NET 2012 was used to develop the graphic user interface (GUI) and the GPSS/H simulation language was utilized to implement the simulation engine of program. When users establish simulation parameters through the GUI, the program calls the simulation engine to perform the simulations repeatedly. Then, it finds the optimal fleet of equipments required for operating the open-pit shovel-truck haulage systems efficiently. Application of the program to the Ssangyong open-pit limestone mine, Gangwon-do, Korea, showed that the daily average profit of shovel-truck haulage operation can be maximized (i.e. 88,552 USD) under following conditions: (a) 4 trucks are dispatched into each loading point and (b) a crusher with capacity of 1,500tph is utilized.

Simulation of Shovel-Truck Haulage Systems in Open-pit Mines by Considering Breakdown of Trucks and Crusher Capacity (트럭 고장 및 파쇄기 처리용량을 고려한 노천광산 쇼밸-트럭 운반 시뮬레이션)

  • Park, Sebeom;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • This paper presents a case study that performed simulations on shovel-truck haulage systems in an open-pit mine by considering truck's breakdown and crusher's capacity. The SSangyoung limestone open-pit mine in Korea was selected as a study area and investigated to design the simulation algorithms. The GPSS/H simulation language is used to implement the simulation algorithms as a console application(simulator). The values of input parameters for simulator were measured by field investigation in the study area. The simulation results showed that 7 trucks can maximize the daily profit of haulage operations(i.e., 73,775 USD) when considers the frequency of trucks' breakdown as 1/40 $hour^{-1}$. In addition, the crusher capacity of 1300 tph is required to improve the efficiency of shovel-truck haulage systems in the study area.