• Title/Summary/Keyword: GPS time

Search Result 1,614, Processing Time 0.038 seconds

Use of Portable Global Positioning System (GPS) Devices in Exposure Analysis for Time-location Measurement

  • Lee, Ki-Young;Kim, Joung-Yoon;Putti, Kiran;Bennett, Deborah H.;Cassady, Diana;Hertz-Picciotto, Irva
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.461-467
    • /
    • 2009
  • Exposure analysis is a critical component of determining the health impact of pollutants. Global positioning systems (GPS) could be useful in developing time-location information for use in exposure analysis. This study compares four low cost GPS receivers with data logging capability (Garmin 60, Garmin Forerunner 201, GeoStats GeoLogger and Skytrx minitracker MT4100) in terms of accuracy, precision, and ease of use. The accuracy of the devices was determined at two known National Geodetic Survey points. The coordinates logged by the devices were compared when the devices were carried while walking and driving. The Garmin 60 showed better accuracy and precision than the GeoLogger when they were placed at the geodetic points. The Forerunner and Skytrx did not record when they were kept stationary. When the subject wore the devices while walking, the location of the devices differed by about 8 m on average between any two device combinations involving the four devices. The distance between the coordinates logged by the devices decreased when the devices were carried with their antennas facing the sky. All the devices showed similar routes when they were used in a car. All the devices except the Forerunner had satisfactory signal reception when they were worn and when they were carried in the car. The GeoLogger is less comfortable for the subject because of specific wearing requirements. This evaluation found that the Garmin 60 and the Skytrx may be useful in personal exposure analysis studies to record time-location data.

Design and Manufacturing a Synchronous Fash of LED Marine Lantern based on GPS-based (GPS기반 동기점멸방식의 해상용 LED등명기의 설계 및 제작)

  • Byun, Gi-Sig;Kim, Gwan-Hyung;Kim, Min;Kim, Chun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.885-891
    • /
    • 2012
  • The synchronous flash of a marine lantern, differentiated from the flash pattern of other risk indicators, supports the safe sailing of vessels. General marine lanterns flash according to the flash protocol through sensing the day and the night. Thus, there can be time error over time and the marine lantern does not synchronously flash as a whole. To resolve this problem, this study designed LED marine lantern based on constant-current system using synchronous flash technique enabling all marine lanterns to keep its time based on GPS satellite time. Also we suggested a radiation method with an effective heat emission performance in the restricted and closed space of a marine lantern.

A Study on Real-Time Detection of Physical Abnormalities of Forestry Worker and Establishment of Disaster Early Warning IOT (임업인의 신체 이상 징후 실시간 감지 및 재해 조기경보 사물인터넷 구축에 관한 연구)

  • Park, In-Kyu;Ham, Woon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose the construction of an IOT that monitors foresters' physical abnormalities in real time, performs emergency measures, and provides alarms for natural disasters or heatstroke such as a nearby forest fire or landslide. Nodes provided to foresters include 6-axis sensors, temperature sensors, GPS, and LoRa, and transmit the measured data to the network server through the gateway using LoRa communication. The network server uses 6-axis sensor data to determine whether or not a forester has any signs of abnormal body, and performs emergency measures by tracking GPS location. After analyzing the temperature data, it provides an alarm when there is a possibility of heat stroke or when a forest fire or landslide occurs in the vicinity. In this paper, it was confirmed that the real-time detection of physical abnormalities of foresters and the establishment of disaster early warning IOT is possible by analyzing the data obtained by constructing a node and a gateway and constructing a network server.

The Efficient Implementation of DGPS System with Low Cost GPS modules Using a Recursive Least Squares Lattice Filtering Method (RLSLF 방식을 적용하여 저가의 GPS 모듈로 구성된 DGPS 시스템의 효율적인 구현)

  • 이창복;주세철;김기두;김영범
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1338-1346
    • /
    • 1995
  • In this paper, we suggest the implementation of a DGPS system using two low cost commercial C/A code GPS modules and modems and its efficient operational techniques to provide DGPS service which guarantees the position accuracy of better than 10 meters for more users. The proposed DGPS system can be implemented easil at low cost because it needs a GPS module and a modem for each reference station and user. The reference station makes plans of the receiving schedule from the satellite set at each period and then provides the correction data for various satellite sets in a period. The main contribution of this paper is that users can utilize the correction data continuously and efficiently through the recursive least squares lattice filtering method. Experimental results show the position accuracy of better than 10 meters using the suggested DGPS system in almost real time.

  • PDF

Development of Access Protocol of GPS-based Radio Buoy System (GPS 기능을 갖는 Radio Buoy 용 Protocol 개발)

  • Moon, Soon-Ki;Kwon, Won-Hyun;Shin, Dong-Guyn;Lee, Chun-Geum;Oh, Chang-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.550-552
    • /
    • 2004
  • In this paper, access protocol is proposed that can optimally control the radio buoy system used for inshore and deep sea fishery. Proposed protocol can minimize the power consumption of radio buoy and can ensure high security from burglary and loss, and it enable a mother ship to control remotely more than 150 radio buoys simultaneously. GPS technology and remote control techniques are used to monitor the exact location and status of the radio buoy system in real time.

  • PDF

GPS Output Signal Processing considering both Correlated/White Measurement Noise for Optimal Navigation Filtering

  • Kim, Do-Myung;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed considering both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman filtering method is verified via numerical simulation.

GPS Surveying for Intersection Improvements (교차로 구조개선을 위한 GPS측량)

  • Kim, Seok-Jong;Shon, Ki-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.125-130
    • /
    • 1994
  • The original concept of GPS is the feature of instantaneous navigation which is the determination of the position of a moving vehicle(ie, a ship, a car, an air craft) by unsmoothed code pseudoranges. The objective of study is compare the efficiency (or time, accuracy) between GPS surveying by using kinematic method and conventional surveying methods in the intersection, and then suggest research materials for actual application.

  • PDF

Visual Target Tracking and Relative Navigation for Unmanned Aerial Vehicles in a GPS-Denied Environment

  • Kim, Youngjoo;Jung, Wooyoung;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.258-266
    • /
    • 2014
  • We present a system for the real-time visual relative navigation of a fixed-wing unmanned aerial vehicle in a GPS-denied environment. An extended Kalman filter is used to construct a vision-aided navigation system by fusing the image processing results with barometer and inertial sensor measurements. Using a mean-shift object tracking algorithm, an onboard vision system provides pixel measurements to the navigation filter. The filter is slightly modified to deal with delayed measurements from the vision system. The image processing algorithm and the navigation filter are verified by flight tests. The results show that the proposed aerial system is able to maintain circling around a target without using GPS data.

Error Analysis and Compensation of Measurement Delay in INS/GPS Integrated Systems with Kalman Filtering (칼만필터를 사용하는 INS/GPS 결합시스템에서 측정치 지연에 의한 오차 분석 및 보상)

  • Park, Chan-Gook;Cho, Seong-Yun;Jin, Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1039-1044
    • /
    • 2000
  • In this paper, the error caused by the measurement delay in INS/GPS integrated systems with Kalman filtering is defined and analyzed through the analytical method and the simulation. It is proved that the error of measurement delay causes not only the position error but also the estimate error of the x-axis accelerometer bias when a vehicle turns. And the estimation method of the delay time and the compensation method using an extrapolation method are presented. The performance of the compensation method is shown by the analytic method and the simulation.

  • PDF

Multi-GNSS Kinematic Precise Point Positioning: Some Results in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • Precise Point Positioning (PPP) method is based on dual-frequency data of Global Navigation Satellite Systems (GNSS). The recent multi-constellations GNSS (multi-GNSS) enable us to bring great opportunities for enhanced precise positioning, navigation, and timing. In the paper, the multi-GNSS PPP with a combination of four systems (GPS, GLONASS, Galileo, and BeiDou) is analyzed to evaluate the improvement on positioning accuracy and convergence time. GNSS observations obtained from DAEJ reference station in South Korea are processed with both the multi-GNSS PPP and the GPS-only PPP. The performance of multi-GNSS PPP is not dramatically improved when compared to that of GPS only PPP. Its performance could be affected by the orbit errors of BeiDou geostationary satellites. However, multi-GNSS PPP can significantly improve the convergence speed of GPS-only PPP in terms of position accuracy.