• Title/Summary/Keyword: GPS system

Search Result 3,075, Processing Time 0.031 seconds

Design and Implementation of Real-Time Operating System for a GPS Navigation Computer (GPS 항법 컴퓨터를 위한 실시간 운영체제의 설계 및 구현)

  • Bae, Jang-Sik;Song, Dae-Gi;Lee, Cheol-Hun;Song, Ho-Jun
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.429-438
    • /
    • 2001
  • GPS (Global Positioning System) is the most ideal navigation system which can be used on the earth irrespective of time and weather conditions. GPS has been used for various applications such as construction, survey, environment, communication, intelligent vehicles and airplanes and the needs of GPS are increasing in these days. This paper deals with the design and implementation of the RTOS (Real-Time Operating System) for a GPS navigation computer in the GPS/INS integrated navigation system. The RTOS provides the optimal environment for execution and the base platform to develop GPS application programs. The key facilities supplied by the RTOS developed in this paper are priority-based preemptive scheduling policy, dynamic memory management, intelligent interrupt handling, timers and IPC, etc. We also verify the correct operations of all application tasks of the GPS navigation computer on the RTOS and evaluate the performance by measuring the overhead of using the RTOS services.

  • PDF

Development of Ship Route Track System Based on Digital Sea Chart with the Capability of Precise Coordinate Analysis of GPS

  • Kang, In-Joon;Kang, Ho-Yun;Chang, Yong-Ku;Mun, Do-Yeoul
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2003
  • For GIS to land and sea in Korea, GIS on land was almost completed with big cities by NGIS(National Geographic Information System) business. However, MGIS(Marine Geographic Information System) being constructed by the National Oceanographic Research Institute is still constructing geography information and definition of attribute information and real condition. We are being studied on research to get maximized the ripple effect linking GPS and Navigation techniques on GIS. GPS in accuracy is divided into navigation and precise surveying equipment. Now, GPS technology has been developed very much and low price GPS equipments are introducing. But expense on GPS equipment is high yet. Therefore, GPS equipment for navigation is used on cheap GPS equipment in a car or ship. In this paper, the author used algorithm to convert ellipsoid coordinate between WGS84 and Bessel ellipsoid and to analyze map projection between BESSEL ellipsoid and UTM plane coordinate system. And the author developed ship navigation system with cheap GPS equipment using algorithm of ellipsoid conversion and map projection. The author proposed the necessity on constructing MGIS to manage many ships.

  • PDF

Determinate Real-Time Position and Attitude using GPS/INS/AT for Real-time Aerial Monitoring System (실시간 공중 자료획득 시스템을 위한 GPS/INS/AT를 이용한 실시간 위치/자세 결정)

  • Han, Joong-Hee;Kwon, Jay-Hyoun;Lee, Im-Pyeong;Choi, Kyoung-Ah
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.531-537
    • /
    • 2010
  • Real-time Aerial Monitoring System performs the rapid mapping in an emergency situation so that the geoinformation could be constructed in near real time. In this system, the position and attitude information from GPS/INS integration algorithm is used to perform the aerial triangulation(AT) without GCPs. Therefore, if we obtain Exterior Orientation(EO) estimates from AT sequentially, EO are used as the measurements in the Kalman filter. In this study, we simulate the GPS/IMS/Image data for an UAV-based aerial monitoring system and compare the GPS/INS/AT with and without from AT. Comparative analysis showed that result from the GPS/INS/AT with EO update is more accurate than without the update. However, when the vehicle turns, the position error significantly increases which need more analysis in the future.

Performance Testing of Integrated Strapdwon INS and GPS

  • Lee, Sang-Joog;Yoo, Chang-Sun;Shim, Yo-Han;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.67-77
    • /
    • 2001
  • In recent navigation system, the profitable solution is to integrate the GPS and Stapdwon INS (SDINS) system and its integration allows compensation for shortcomings of each system. This paper describes the hardware preparation and presents the test results obtained from the automobile test of the developed system. The automobile tests was conducted with two kinds of inertial sensors and GPS receivers : short range and middle range test, to verify and evaluate the performance of the integrated navigation system. The reference of position is given by the Differential GPS(DGPS) which has cm-level accuracy to compare the accuracy of system. Kalman filtering is used for integrating GPS and SDINS and this filter effectively allows the long-term stability of GPS to correct and decrease the time deviation error of SDINS.

  • PDF

Development of Correction Algorithm for Integrated Strapdown INS/GPS by using Kalman Filter

  • Lee, Sang-Jong;Naumenko, C.;Kim, Jong-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 2001
  • The Global Positioning System(GPS) and the Strapdown Inertial Navigation System(SDINS) techniques have been widely utilized in many applications. However each system has its own weak point when used in a stand-alone mode. SDINS suffers from fast error accumulation dependent on an operating time while GPS has problem of cycle slips and just provides low update rate. The best solution is to integrate the GPS and SDINS system and its integration allows compensation for each shortcomings. This paper, first, is to define and derive error equations of integrated SDINS/GPS system before it will be applied on a real hardware system with gyro, accelerometer and GPS receiver. Second, the accuracy, availability and performance of this mechanization are verified on the simulation study.

  • PDF

A Study on the Pilot's Adaptation for GPS Operation (조종사의 위성항행시스템 적응방안에 관한 연구)

  • Han, K.K.;Song, B.H.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.7 no.1
    • /
    • pp.7-18
    • /
    • 1999
  • The FAA, along with the ICAO and other members of the civil aviation community, has recognized that a GNSS will provide the primary stand-alone navigation system in the 21st Century. FAA has initiated plans to transition from its present ground-based navigation and landing system to satellite-based using signals generated by the GPS. In spite of some risks, GPS users are increasing rapidly. About 52 aircraft equipped with various GPS in their system and wide spread of GPS may be expected in Korea. However, the regulations concerning with CPS implementation were not established by the government. Another problem is GPS receiver's interface. The user interface, operating method and capability vary with GPS class and model. As a direct operator for the system, pilots have to ensure these limitations and rules for efficient adaptation and safety. The issues identified by the study are highly interrelated, and are evidence of aviation system problem. To treat one issue in isolation may improve certain aspects of the aviation system, but will ultimately fail to fundamentally increase the safety and efficiency for the system.

  • PDF

Vehicle Navigation using Carrier Phase of GPS/GLONASS (GPS/GLONASS의 반송파 위상을 이용한 차량항법)

  • Lee, In-Su;Lee, Yong-Hee;Moon, Du-Youl;Son, Young-Dong
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.303-310
    • /
    • 2002
  • Nowadays, the combined land navigation system using GPS(Global Positioning System) and DR(Deduced Reckoning), etc. has been used. Although GPS is popular with the land navigation system, this is not useful for the kinematic positioning of the vehicles in the urban canyon because of its few satellites. Thus, this study deals with the kinematic positioning of the vehicles with the combined GPS/GLONASS(GLObal Navigation Satellite System) to compliment the drawbacks of GPS. So the kinematic positioning of the vehicles can be performed constantly by the combined GPS/GLONASS based on the high acquisition rate of data with the help of GLONASS despite of many obstacles and few satellites tracked in the test sites. Consequently, the combined GPS/GLONASS can be applicable to the control of traffic flow and the effective management of read system.

Design of the Crane position control System using GPS and USN (GPS와 USN을 이용한 크레인 위치제어 시스템 설계)

  • Lim, Su-Il;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1520-1525
    • /
    • 2009
  • In this paper, we study and simulate the suggested position control system using GPS and USN to replace the existing control system of a crane. For the correct approach, the position control system of a crane is divided into the control system of the ground station and the mobile station The hardware is comprised of GPS receiving module to receive the position control data of a crane from GPS satellites, bluetooth communication module for the data communication between the ground station and the mobile station, supersonic sensor module for a precise position control of a crane, motor to replace a crane roller, embedded MCU(ATmega128L) and so on. In here, an embedded MCU controls GPS receiving module, bluetooth communication module and supersonic sensor module. The Software is comprised of three programs. Three programs are the program to filter GGA output part in a receiving data of GPS receiving module, the driving program for supersonic sensor module, the digital map program to monitor a crane location. From the simulation results, it is demonstrated that the proposed system has the capability of crane position control with 1cm precision.

A Comparative Study between GPS-based and RFID-based Traffic Information Collection System (RFID와 GPS 기반의 교통정보 수집체계 비교분석연구)

  • Choi, Keecho;Shim, Sangwo;Kim, Dong-hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.571-578
    • /
    • 2009
  • This paper shows the results of the comparative analysis of differences and similarities between GPS-based and RFID-based traffic information collection systems for testing the applicability of RFID system in urban street settings in Jeju island, Korea. For this, we reviewed both traffic information collection systems in terms of accuracy, link design scheme and cost. Regarding accuracy and real world applicability, the GPS-based system is superior and accurate. In terms of the operational cost during the first 10 years, however, the cost of RFID-based system was identified lower than that of GPS-based system. The applicability of RFID-based system, in spite of the weakness of accuracy and applicability, was tested successfully in urban settings. Some limitations and future research agenda have also been presented.

SINR Expression of an Adaptive Array Based on Composite and Null Despreaders for Multiple GPS Signals (다수개의 GPS 신호들을 위한 혼합 역확산기와 널 역확산기 기반의 적응 어레이의 SINR 표현)

  • Hwang, Suk-Seung;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.4
    • /
    • pp.274-280
    • /
    • 2009
  • In order to estimate the accurate location of a user, Global Positioning system (GPS) requires at least four satellites. Since a conventional despreader operate for an GPS signal of interest, we need multiple despreaders for detecting multiple GPS signals. In this paper, we introduce the extension of the recently proposed system consisting of a null despreader, a conventional despreader, multi-stage CM (constant modulus) array, for the multiple GPS signals, and present the mathematical expression of the signal-to-interference-and-noise ratio (SINR). The extended system does not require the exact information of the direction of arrival (DOA) to suppress the directional interferences. We present the computer simulation to demonstrate the interference suppression performance of the proposed system for multiple GPS signals.

  • PDF