• Title/Summary/Keyword: GPS system

Search Result 3,083, Processing Time 0.026 seconds

Application of Marine Geographic Information System Using Analysis of Control Points in Postprocessing DGPS Surveying (후처리 DGPS측량의 기준점 분석을 이용한 해양지리정보시스템 적용)

  • 김진영;장용구;김상석;강인준
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.275-281
    • /
    • 2004
  • Geodetic surveying using precise GPS equipment are used without analysis with a statistical verification of GPS observed value and it was preformed by necessity to integration projection of digital topographic map and nautical Chart for integration geographic information system construction. The purpose of this study proposes method that improve accuracy of GPS observed value and direction that integrally manage digital topographic map and electronic nautical chart in analyzing the boundary line error between digital topographic map and nautical Chart. For improvement of the precision of GPS observed value, the author studied precision-analysis of GPS observed value by geometric strength and variance factor in 3 control points used in GPS network adjustment. This study compare the whole boundary point error When producing EDM measurement using this GPS observation results and setting digital topographic map and nautical chart by these boundary.

  • PDF

An Active Interference Cancellation Technique for Removing Jamming Signals in Array Antenna GPS Receivers (GPS 수신기에서 간섭신호에 대응하기 위한 배열 안테나기반 능동 간섭 제거 방안)

  • Jeong, Eui-Rim;Won, Hyun-Hee;Cho, Sung-Woo;Ahn, Byoung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1539-1545
    • /
    • 2015
  • GPS (global positioning system) is a popular system that provides location information by measuring arrival time difference at the receiver between several GPS satellite signals. GPS is widely used in commercial area as well as military systems. Reliable GPS signal reception is more important in the military systems. However, since the carrier frequencies of the GPS signals are well known, the GPS receivers are vulnerable to intentional jamming attacks. To remove jammers but maintain GPS signals at the received signals, a popular technique is an adaptive beam steering method based on array antenna. Among adaptive beam steering techniques, this paper considers MVDR (minimum variance distortionless response) algorithm, and proposes a new adaptive technique that preserves the received signals at desired direction, but removes the jamming signals adaptively. The performance of the proposed method is verified through computer simulation.

Performance Analyses of the GPS Receiver for Satellite Launch Vehicles according to Temperature Variation (온도변화에 따른 위성발사체용 GPS 수신기의 성능분석)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.101-108
    • /
    • 2005
  • The GPS(Global Positioning System) receiver for satellite launch vehicles which will be mounted on a launch vehicle can be applied to the flight safety system with its accurately calculated position and velocity data during vehicle's flight. This paper analyzes the performance of the GPS receiver such as SNR(Signal to Noise Ratio), fix mode, position and velocity error, number of visible and tracking satellites, and PDOP(Position Dilution of Precision) under temperature variation which is changed from -34$^{\circ}C$ to +71$^{\circ}C$.

Electromagnetic Test of the GPS Receiver System for a Satellite Launch Vehicle - Part I. Outline & Emission Test (위성발사체용 GPS 수신기 시스템의 전자파시험 - Part I. 시험개요 및 방사시험)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.329-337
    • /
    • 2007
  • This paper deals with electromagnetic tests of the GPS receiver system that should be developed to satisfy emission and susceptibility requirements for a satellite launch vehicle. Performance of the GPS receiver system against electromagnetic environment that is improved through several tests satisfies all requirements about electromagnetic tests. The outline of the electromagnetic tests and emission test results of CE102, CE106 and RE102 on MIL-STD-461E are described in Part I.

Electromagnetic Test of the GPS Receiver System for a Satellite Launch Vehicle - Part II. Susceptibility Test (위성발사체용 GPS 수신기 시스템의 전자파시험 - Part II. 내성시험)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.338-346
    • /
    • 2007
  • This paper deals with electromagnetic tests of the GPS receiver system that should be developed to satisfy emission and susceptibility requirements for a satellite launch vehicle. The performance of the GPS receiver system against electromagnetic environment that is improved through several tests satisfies all requirements about electromagnetic tests. The susceptibility test results of CS101, CS114, CS115, CS116 and RS103 on MIL-STD-461E are described in Part II.

Analysis of the Protection Ratio of GPS System in the Presence of RF Interference Radiated by UWB System (UWB 시스템의 간섭 신호에 대한 GPS 보호 비 분석)

  • Cho, In-Kyoung;Shim, Yong-Sup;Lee, Il-Kyoo;Cho, Hyun-Mook;Hong, Hyun-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.208-213
    • /
    • 2011
  • This paper analyzes potential interference effects of Ultra Wide Band(UWB) on Global Positioning System(GPS) which is providing safety service. For the interference analysis, positioning error method is used to determine the minimum protection distance to meet positioning error of 2.5 m below and Minimum Coupling Loss(MCL) method is used to determine the required protection ratio(I/N) from the protection distance of UWB transmitter and GPS receiver to meet positioning error of 2.5 m below. In a result, the minimum protection distance to meet positioning error of 2.5 m below was about 10 m and the protection ratio to meet positioning error 2.5 m below was -20 dB. The protection ratio proposed in this paper is the same value of the protection ratio of safety service proposed by ITU-R. The obtained protection ratio can be used for the protection standard of domestic GPS system for the safe of life service.

A new GPS/DR integration filter for a car navigation system (차량항법시스템을 위한 새로운 GPS/DR Integration 필터)

  • 김세환;박상현;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.884-887
    • /
    • 1996
  • This paper describes a GPS/DR integration filter for a car navigation system. A new GPS/DR integration filter is derived for obtaining more accurate and reliable position data. The covariance analysis results and simulation results are shown for evaluating the performance of the proposed GPS/DR integration filter.

  • PDF

Localization Performance Enhancement on GPS Interfering Spot (GPS 음영지역 극복을 위한 이동로봇의 실험적 위치추정)

  • Kim, Ji-Yong;Lee, Ji-Hong;Byun, Jae-Min
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.115-117
    • /
    • 2009
  • This paper presents localization performance enhancement on GPS interfering spot for mobile robot. Localization system applied Extended Kalman filter algorithm that utilized Diffrential GPS and odometry, inertial sensors. In this paper, different noise covariance is applied to Extended Kalman Filter according to the GPS quality. Experiment results show that proposed localization system improve considerably localization performance of mobile robots.

  • PDF

Analysis and Simulation of Signal Acquisition of GPS Software Receiver (SGR에서 신호처리과정의 분석과 시뮬레이션)

  • Zhang, Wei;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • In this paper, for a software-based Global Positioning System receiver (SGR), the principle capturing Global Positioning System (GPS) signal is researched extensively in order to analyze the processing of the GPS raw data signal at the lowest level, and the process of capturing the GPS signal was simulated by Matlab. The simulation results show the accuracy and the feasibility of this method, which is comparable to study under a true environment. We know that the improvement of the receiving facilities is of very vital significance to the performance of this system, and the fine frequency can be found through comparing phases within a few tens of Hertz.

A Development of Attitude GPS/INS Integration System (자세 측정용 GPS/INS통합 시스템 개발)

  • Oh, Chun-Gyun;Lee, Jae-Ho;Seo, Hung-Seok;Sung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1984-1986
    • /
    • 2001
  • In order to provided continuous solutions, latest developing navigation systems tend to integrate GPS receiver with INS or DR. Using the GPS carrier-phase measurements, an attitude GPS receiver with three antennas obtain the 3-dimensional attitude such as roll, pitch, and heading as well as position and velocity. With these angle measurements, in the attitude GPS/INS integrated system, attitude or gyro errors can be directly compensated. In this paper, we develop an integrated navigation system that combines attitude GPS receiver with INS. The performance of real-time integrated navigation system is determined by not only the implements of integration filter but also the synchronization of measurements. To meet these real-time requirements, the navigation software is implemented in multi-tasking structure in this paper. We also employ time-synchronization technique in the multi-sensor fusion. Experimental results show that the performance of the attitude GPS/INS integrated system is consistent even when cycle-slip occurs in carrier-phase measurements.

  • PDF