• Title/Summary/Keyword: GPS signal

Search Result 773, Processing Time 0.035 seconds

Real-time LSTM Prediction of RTS Correction for PPP by a Low-cost Positioning Device (저가형 측위장치에 RTS 보정정보의 실시간 LSTM 예측 기능 구현을 통한 PPP)

  • Kim, Beomsoo;Kim, Mingyu;Kim, Jeongrae;Bu, Sungchun;Lee, Chulsoo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • The international gnss service (IGS) provides real-time service (RTS) orbit and clock correction applicable to the broadcast ephemeris of GNSS satellites. However, since the RTS correction cannot be received if the Internet connection is lost, the RTS correction should be predicted and used when a signal interruption occurs in order to perform stable precise point positioning (PPP). In this paper, PPP was performed by predicting orbit and clock correction using a long short-term memory (LSTM) algorithm in real-time during the signal loss. The prediction performance was analyzed by implementing the LSTM algorithm in RPI (raspberry pi), the processing speed of which is not high. Compared to the polynomial prediction model, LSTM showed excellent performance in long-term prediction.

A Preliminary Study of Korean Dual-Frequency SBAS

  • Yun, Ho;Han, Deokhwa;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • A Satellite Based Augmentation System (SBAS) is a representative differential GNSS system, which is used for the navigation performance improvement of Global Navigation Satellite System (GNSS) users. SBAS has been developed focusing on the securement of user integrity so that it can be used for the navigation in aviation fields. Accordingly, the development of SBAS has been completed, and it has been actively used in the United States, Europe, and Japan. As the new satellite of Global Positioning System (GPS) recently started to broadcast new civil signals (L5 frequency), the methods for improving user navigation performance in SBAS using this signal have also been studied. In Korea, to keep pace with these circumstances, full-scale SBAS development is expected to start in 2014, and studies on dual-frequency SBAS using L1/L5 frequencies will also be performed. In this study, before the full-scale development of dual-frequency SBAS in Korea, a simulation was performed to predict the performance and analyze the expected effects.

An Indoor Positioning System for Mobile Robots Using Visible Light Communication and Fuzzy Logic (가시광 통신과 퍼지 논리를 이용한 모바일 로봇의 실내 위치 인식 시스템)

  • Kim, Jun-Young;Kim, Ji-Su;Kang, Geun-Taek;Lee, Won-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.75-82
    • /
    • 2016
  • Visible light communication (VLC) using LED lamps is suitable for implementing an indoor positioning system in an indoor environment where the global positioning system (GPS) signal does not reach. In this paper, we present an indoor positioning system for mobile robots using a VLC beacon and fuzzy rules. This system consists of an autonomous mobile robot, VLC modules, and device application software. Fuzzy rules are applied to plan the global and local paths along which the mobile robot navigates indoors. The VLC transmitter modules are attached to the wall or the ceiling as beacons to transmit their own location information. The variable pulse position modulation (VPPM) algorithm is used to transmit data, which is a new modulation scheme for VLC providing a dimming control mechanism for flicker-free optical communication. The mobile robot has a receiver module to receive the location information while performing its mission in the environment where VLC transmitters are deployed.

Step Trajectory/Indoor Map Feature-based Smartphone Indoor Positioning System without Using Wi-Fi Signals (Wi-Fi 신호를 사용하지 않고 보행자 궤적과 건물내 지도 특성만을 이용한 스마트폰 실내 위치 측정 시스템)

  • Na, Dong-Jun;Choi, Kwon-Hue
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.323-334
    • /
    • 2014
  • In this paper, we proposed indoor positioning system with improved accuracy. The proposed indoor location measurement system is based pedestrian location measurement method that use the embedded sensor of smartphone. So, we do not need wireless external resources, such as GPS or WiFi signals. The conventional methods measure indoor location by generating a movement route of pedestrian by step and direction recognition. In this paper, to correct the direction sensor error, we use the common feature of the normal indoor floor map that the indoor path is lattice-structured. And we quantize moving directions depending on the direction of indoor path. In addition, we propose moving direction measuring method using geomagnetic sensor and gyro sensor to improve the accuracy. Also, the proposed step detection method uses angle and accelerometer sensors. The proposed step detection method is not affected by the posture of the smartphone. Direction errors caused by direction sensor error is corrected due to proposed moving direction measuring method. The proposed location error correction method corrects location error caused by step detection error without the need for external wireless signal resources.

The Implementation of Information Providing Method System for Indoor Area by using the Immersive Media's Video Information (실감미디어 동영상정보를 이용한 실내 공간 정보 제공 시스템 구현)

  • Lee, Sangyoon;Ahn, Heuihak
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.157-166
    • /
    • 2016
  • This paper presents the interior space information using 6D-360 degree immersive media video information. And we implement the augmented reality, which includes a variety of information such as position information, movement information of the specific location in the interior space GPS signal does not reach the position information. Augmented reality containing the 6D-360 degree immersive media video information provides the position information and the three dimensional space image information to identify the exact location of a user in an interior space of a moving object as well as a fixed interior space. This paper constitutes a three dimensional image database based on the 6D-360 degree immersive media video information and provides augmented reality service. Therefore, to map the various information to 6D-360 degree immersive media video information, the user can check the plant in the same environment as the actual. It suggests the augmented reality service for the emergency escape and repair to the passengers and employees.

Dynamic Position of Vehicles using AHRS IMU Sense (AHRS IMU 센서를 이용한 이동체의 동적 위치 결정)

  • Back Ki-Suk;Lee Jong-Chool;Hong Soon-Hyun;Cha Sung-Yeoul
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.77-81
    • /
    • 2006
  • GPS cannot determine random errors such as multipath and signal cutoff caused by surrounding environment that determines the visibility of satellites and the speed of data creation and transmission is lower than the speed of vehicles, it is difficult to determine accurate dynamic positions. Thus this study purposed to implement a method of deciding the accurate dynamic position of vehicles by combining AHRS (Attitude Heading Reference System) IMU (Initial Measurement Unit) based on low-priced MEMS (Micro Electro Mechanical System) in order to provide the information of attitude, position and speed at a high transmission rate without external help. This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. The roll angle was $y=(A{\times}10^{-6})x^2 -(B{\times}10^{-5})x+Cr{\times}10^{-2}$ and the pitch angle was $y=(A{\times}10^{-6})x^2-(B{\times}10^{-7})x+C{\times}10^{-2}$, each of which was derived from second-degree polynomial regression analysis. It was also found that the heading angle was stabilized with variation less than $1^{\circ}$ after 60 seconds.

  • PDF

A Trajectory Identification Technique for Two Rotating Sound Sources with Different Frequencies (서로 다른 주파수를 갖는 두 개의 회전음원의 위치추적에 대한 연구)

  • Lee, Jong-Hyun;Lee, Ja-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.710-718
    • /
    • 2009
  • The time difference of arrival(TDOA) algorithm is being used widely for identifying the location of a source emanating either electrical or acoustic signal. It's application areas will not be limited to identifying the source at a fixed location, for example the origin of an earthquake, but will also include the trajectory monitoring for a moving source equipped with a GPS sensor. Most of the TDOA algorithm uses time correlation technique to find the time delay between received signals, and therefore difficult to be used for identifying the location of multiple sources. In this paper a TDOA algorithm based on cross-spectrum is developed to find the trajectory of two sound sources with different frequencies. Although its application is limited to for the sources on a disk plane, it can be applied for identifying the locations of more than two sources simultaneously.

Positional Tracking System Using Smartphone Sensor Information

  • Kim, Jung Yee
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.265-270
    • /
    • 2019
  • The technology to locate an individual has enabled various services, its utilization has increased. There were constraints such as the use of separate expensive equipment or the installation of specific devices on a facility, with most of the location technology studies focusing on the accuracy of location verification. These constraints can result in accuracy within a few tens of centimeters, but they are not technology that can be applied to a user's location in real-time in daily life. Therefore, this paper aims to track the locations of smartphones only using the basic components of smartphones. Based on smartphone sensor data, localization accuracy that can be used for verification of the users' locations is aimed at. Accelerometers, Wifi radio maps, and GPS sensor information are utilized to implement it. In forging the radio map, signal maps were built at each vertex based on the graph data structure This approach reduces traditional map-building efforts at the offline phase. Accelerometer data were made to determine the user's moving status, and the collected sensor data were fused using particle filters. Experiments have shown that the average user's location error is about 3.7 meters, which makes it reasonable for providing location-based services in everyday life.

A Monitoring Method of Code, Carrier and Navigation Message for Marine Local Area DG PS (해양 분야 DGPS를 위한 코드, 반송파, 항법 메시지 검사 기법)

  • Kim, Jeong-Won;Jang, Han-Jin;Kim, Tae-Ho;Son, Seok-Bo;Hwang, Dong-Hwan;Lee, Sang-Jeong;Park, Chan-Sik;Suh, Sang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2567-2569
    • /
    • 2005
  • 본 논문에서는 해양분야에 적용 가능한 GPS(Global Positioning System) 코드, 반송파, 항법 메시지 감시 기법을 제안한다. GPS를 구성하고 있는 위성, 지상 제어국, 사용자부에 내재한 고장 요인들에 대하여 분석하고 이를 바탕으로 각 고장에 대응할 수 있는 검사기법들을 제시한다. 제시하는 검사기법은 DGPS 기준국에서 수행할 수 있는 검사 기법으로 신호 감시 기법(SQM, Signal Quality Monitoring), 데이터 감시 기법(DQM, Data Quality Monitoring), 측정치 감시 기법(MQM, Measurement Quality Monitoring)으로 구성된다. 해양 분야에 적용을 위하여 해양 분야에서 요구하는 GNSS(Global Navigation Satellite System)에 대한 안전조건을 조사하고 이를 바탕으로 해양 분야에 사용가능한 감시 기법을 제시한다.

  • PDF

Enhancement of Hearability in Geolocation Using Mobile WiMAX Network with Interference Cancellation and Long Integration (간섭 상쇄 기법과 장기 누적 기법을 이용한 WiBro 지상파 측위 시스템의 가청성 향상)

  • Park, Ji-Won;Lim, Jeong-Min;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.375-383
    • /
    • 2012
  • Together with the GPS-based approach, geolocation through mobile communication networks is a key technology for location-based service. Since the Mobile WiMAX system is considered as a candidate for fourth-generation mobile systems, it is important to investigate its location capability. The geolocation of Mobile WiMAX can be realized when the preamble symbols in the down-link channel are appropriately used for a TDOA (Time-Difference-of-Arrival) approach. However, the cellular structure of Mobile WiMAX inevitably generates co-channel interference, and it is difficult for the mobile terminal to acquire distance measurements from multiple base stations. Therefore, for geolocation via multilateration using the Mobile WiMAX network, it is very important to increase hearability. This paper proposes a geolocation method for Mobile WiMAX which employs interference cancellation and preamble signal overlapping for the enhancement of hearability. A novel interference cancellation strategy for complex-valued Mobile WiMAX signals is presented which has an iterative structure. Simulation results show that the proposed geolocation method provides the user's position with an accuracy of less than 20 m through the Mobile WiMAX cellular network if there is no multi-path or NLOS (None-Line-of-Sight).