• 제목/요약/키워드: GPS satellite

검색결과 879건 처리시간 0.025초

GPS Data Application of the KOMPSAT-2

  • Chung, Dae-Won;Kwon, Ki-Ho;Lee, Sang-Jeong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.337-342
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. The KOrea Multi-Purpose SATellite-1 (KOMPSAT-1) which was launched in December 1999 has used GPS receiver's navigation solution to perform the Orbit Determination (OD) in the ground. At the circumstance of using only one ground station, the Orbit Determination using GPS receiver is good method. Because the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation, post-processing concepts such as the Precise Orbit Determination (POD) are applied to satellite data processing to improve satellite position accuracy. The POD uses GPS receiver's raw measurement data instead of GPS receiver's navigation solution. The KOrea Multi- Purpose SATellite-2 (KOMPSAT-2) system newly uses the POD technique for large scale map generation. The satellite was launched in the end of July 2006. The satellite sends high resolution images in panchromatic band and multi-spectral bands to the ground. The satellite system uses GPS receivers as source of time synchronization and command reference in the satellite, provider of navigation solution for the OD, and provider of raw measurement data for the POD. In this paper, mechanical configuration and operations of the GPS receiver will be presented. The GPS data characteristics of the satellite such as time synchronization, command reference, the OD using GPS receiver's navigation solution, and the POD using GPS receiver's raw measurement data will be presented and analyzed. The enhancement of performance compared with it of the previous satellite will also be analyzed.

  • PDF

An Approach for GPS Clock Jump Detection Using Carrier Phase Measurements in Real-Time

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.429-435
    • /
    • 2012
  • In this study, a real-time architecture for the detection of clock jumps in the GPS clock behavior is proposed. GPS satellite atomic clocks have characteristics of a second order polynomial in the long term showing sudden jumps occasionally. As satellite clock anomalies influence on GPS measurements which could deliver wrong position information to users as a result, it is required to develop a real time technique for the detection of the clock anomalies especially on the real-time GPS applications such as aviation. The proposed strategy is based on Teager Energy operator, which can be immediately detect any changes in the satellite clock bias estimated from GPS carrier phase measurements. The verification results under numerous cases in the presence of clock jumps are demonstrated.

Enhancement of Continuity and Accuracy by GPS/GLONASS Combination, and Software Development

  • Kang, Joon-Mook;Lee, Young-Wook;Park, Joung-Hyun
    • Korean Journal of Geomatics
    • /
    • 제2권1호
    • /
    • pp.65-73
    • /
    • 2002
  • GPS in the United States and GLONASS of the old Soviet Union are used currently as satellite navigation systems. Plans are being made to use the Galileo satellite system in Europe, and these plans focus on a combined application of the satellite navigation systems. In this study, we examined the possibility of effective application of a combination of GPS/GLONASS in urban areas, where 3-dimensional positioning is impossible with GPS alone. We analyzed the 3-D coordinate deviation of a GLONASS satellite by integration interval and compared it with GLONASS satellite coordinates in precise ephmerides by transforming it into WGS84. We also programmed GPS/GLONASS, analyzed 3-D positioning accuracy by static surveying and kinematic surveying with Ashtech Z18 receivers and Legacy receivers, and then compared the results to those of GPS surveying. As a result, we are able to decide the integration interval for producing GLONASS satellite coordinates in navigation and geographical information and construct a GPS/GLONASS data processing system by developing a DGPS/DGLONASS positioning program. If more than four GLONASS satellites are observed, the accuracy of GPS/GLONASS is better than that of GPS positioning. As a result of kinematic surveying in a congested urban area with skyscrapers, we discovered that the GPS/LONASS combination is very effective.

  • PDF

KOMPSAT-1 Satellite Orbit Control using GPS Data

  • Lee, Jin-Ho;Baek, Myuog-Jin;Koo, Ja-Chun;Yong, Ki-Lyuk;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권2호
    • /
    • pp.43-49
    • /
    • 2000
  • The Global Positioning System (GPS) is becoming more attractive navigation means for LEO (Low Earth Orbit) spacecraft due to the data accuracy and convenience for utilization. The anomalies such as serious variations of Dilution-Of-Precision (DOP), loss of infrequent 3-dimensional position fix, and deterioration of instantaneous accuracy of position and velocity data could be observed, which have not been appeared during the ground testing. It may cause lots of difficulty for the processing of the orbit control algorithm using the GPS data. In this paper, the characteristics of the GPS data were analyzed according to the configuration of GPS receiver such as position fix algorithm and mask angle using GPS navigation data obtained from the first Korea Multi-Purpose Satellite (KOMPSAT). The problem in orbit tracking using GPS data, including the infrequent deterioration of the accuracy, and an efficient algorithm for its countermeasures has also been introduced. The reliability and efficiency of the modified algorithm were verified by analyzing the effect of the results between algorithm simulation using KOMPSAT flight data and ground simulator.

  • PDF

가상행성 섭동력을 고려한 긴 주기 GPS 위성궤도예측기법 (Long-Term GPS Satellite Orbit Prediction Scheme with Virtual Planet Perturbation)

  • 유승수;이정혁;한진희;지규인;김선용
    • 제어로봇시스템학회논문지
    • /
    • 제18권11호
    • /
    • pp.989-996
    • /
    • 2012
  • The purpose of this paper is to analyze GPS (Global Positioning System) satellite orbital mechanics, and then to propose a novel long-term GPS satellite orbit prediction scheme including virtual planet perturbation. The GPS orbital information is a necessary prerequisite to pinpointing the location of a GPS receiver. When a GPS receiver has been shut down for a long time, however, the time needed to fix it before its reuse is too long due to the long-standing GPS orbital information. To overcome this problem, the GPS orbital mechanics was studied, such as Newton's equation of motion for the GPS satellite, including the non-spherical Earth effect, the luni-solar attraction, and residual perturbations. The residual perturbations are modeled as a virtual planet using the least-square algorithm for a moment. Through the modeling of the virtual planet with the aforementioned orbital mechanics, a novel GPS orbit prediction scheme is proposed. The numerical results showed that the prediction error was dramatically reduced after the inclusion of virtual planet perturbation.

지구저궤도 GPS 수신기의 시험 및 성능 분석 방법 (TEST AND PERFORMANCE ANALYSIS METHODS OF LOW EARTH ORBIT GPS RECEIVER)

  • 정대원;이상정
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권3호
    • /
    • pp.259-268
    • /
    • 2006
  • 우주 공간에서 GPS 수신기의 사용은 지구저궤도에서 일반화가 되었다. 최근 대부분의 위성은 위성 위치를 찾기 위한 항법 해로써 GPS 수신기를 사용한다. 그러나, GPS 수신기로부터 직접 획득한 항법 해의 정확도는 지도 제작과 같은 위성 활용에서 충분하지가 않다. 정밀궤도결정과 같은 후처리 개념이 위성 위치 정확도를 향상시키기 위해서 위성 자료 처리에 최근 적용되고 있다. 정밀궤도결정은 GPS 수신기의 항법 해가 아닌 원시 측정 자료를 사용한다. 원시 측정 자료의 성능은 GPS 수신기의 원시 측정 자료 정확도 및 추적 루프 알고리듬에 의해서 결정된다. 이 논문에서는 원시 측정 자료의 성능을 평가할 수 있는 기법을 제안하였다. GPS 수신기의 항법 해와 정밀궤도결정의 항법 해를 얻기 위한 지구저궤도위성의 시험 환경 및 절차를 기술하였다. 추가로, GPS수신기의 항법 해, 원시 측정 자료, 정밀궤도결정의 항법 해에 대한 정확도를 분석하였다. 제안된 기법은 일반적인 저궤도 위성에 적용 가능하다.

Performance Analysis of the GPS Receiver under High Acceleration and Jerk Environments

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.279-283
    • /
    • 2006
  • The GPS receiver developed by KARI for the satellite launch vehicle should operate under severe dynamic environments such as high acceleration and jerk. Several terrestrial tests including the outdoor centrifuge test are planed in order to verify performances of the GPS receiver before flight. This paper deals with preliminary test results of the GPS receiver using a GPS signal generator before the centrifuge test that is a performance test of the GPS receiver using live GPS satellite signals. Test methods of the GPS receiver for the satellite launch vehicle under high centripetal acceleration and jerk utilizing a GPS signal generator are described. The simulation results are also analyzed in this paper.

  • PDF

Analysis of Pseudolite Augmentation for Vessel Berthing

  • Cho, Deuk-Jae;Park, Sang-Hyun;Suh, Sang-Hyun
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.15-19
    • /
    • 2006
  • GPS has been increasingly exploited to provide positioning and navigation solutions for a variety of applications. In vessel berthing application, however, there are stringent requirements in terms of positioning accuracy, availability and integrity that cannot be satisfied by GPS alone. This is because the performance of satellite-based positioning and navigation systems are heavily dependent on both the number and the geometric distribution of satellite tracked by receivers. Due to the limited number of GPS satellites, a sufficient number of ‘visible’ satellites cannot be sometimes guaranteed. This paper discusses some issues associated with the implementation of ground-based pseudolite augmentation for vessel berthing. Pseudolite means small transmitter that transmits GPS-like signals in local area. Actually, pseudolite can play three different roles in GPS augmentation scheme, depending on the operational conditions. Firstly, in the case of kinematic GPS operation where there are no signal blockages, and more than five satellites are available, additional pseudolites strengthen the GPS satellite-pseudolite geometry, and more accurate and reliable positioning solution can be achieved. Secondly, in the case when there are adverse GPS operational environments in which the number of tracked satellites is less than four, pseudolites can complement the GPS signals. In the third case, GPS signals are completely unavailable, such as when operated indoor. In such cases the pseudolites can replace the satellite constellation. However, the first role will be considered in this paper, since more than four satellite signals can usually be tracked in most marine applications. This paper presents that the pseudolite-augmented precise positioning system can provides continuous centimeter-level positioning accuracy through comparison analysis of RDOP simulation result of the GPS satellite constellation and the pseudolite-augmented GPS satellite constellation.

  • PDF

GPS L1 C/A 기만 신호 검출 기법 설계 (Design of GPS L1 C/A Spoofing Signal Detection Algorithm)

  • 임순;임덕원;허문범;남기욱
    • 한국항행학회논문지
    • /
    • 제18권1호
    • /
    • pp.7-13
    • /
    • 2014
  • 본 논문에서는 GPS 전파 간섭 신호의 한 종류인 기만 신호를 검출하는 기법을 제안한다. 본 논문에서 기만의 대상이 되는 신호에는 민간에 구조가 공개된 GPS L1 C/A 신호로 선정하였으며 GPS L1 C/A 기만 신호의 영향을 분석하고 이를 통해서 기만 신호 검출 기법을 제안한다. 제안하는 기만 신호 검출 기법은 상관함수가 왜곡된 정도로 기만 신호의 인가를 판단한다. 기만 신호의 판단기준은 수신기 열잡음의 통계적 특성으로부터 정량적인 수치로 계산된 임계값을 이용하였다. 제안하는 기법을 검증하기 위한 시뮬레이션은 MATLAB을 기반으로 구성하였으며 기만 신호에 의한 상관함수 왜곡 및 코드 위상 오차를 확인하였다. 그리고 본 논문에서 제안하는 기만 신호 검출 기법을 적용하여 기만 신호의 검출 시뮬레이션을 수행하여 제안하는 기법에 의한 기만 신호 검출성능을 확인하였다.

Evaluation of Point Positioning Using the Global Positioning System and the Quasi-Zenith Satellite System as Measured from South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.403-409
    • /
    • 2015
  • The Quasi-Zenith Satellite System (QZSS), a dedicated regional Japanese satellite system currently under development, was designed to complement the performance of the Global Positioning System (GPS). The high elevation angle of the QZSS satellite is expected to enhance the effectiveness of GPS in urban environments. Thus, the work described in this paper, aimed to investigate the effect of QZSS on GPS performance, by processing the GPS and QZSS measurements recorded at the Bohyunsan reference station in South Korea. We used these data, to evaluate the satellite visibility, carrier-to-noise density (C/No), performance of single point positioning, and Dilution of Precision (DOP). The QZSS satellite is currently available over South Korea for 19 hours at an elevation angle of more than 10 degrees. The results showed that the impact of the QZSS on users' vertical positioning is greatest when the satellite is above 80 degrees of elevation. As for Precise Point Positioning (PPP) performance, the combined GPS/QZSS kinematic PPP was found to improve the positioning accuracy compared to the GPS only kinematic PPP.