• Title/Summary/Keyword: GPS Surveying

Search Result 740, Processing Time 0.025 seconds

The Technical Benefits of Future GNSS for Taiwan

  • Chiang, Kai-Wei;Yang, Ming;Tsai, Meng-Lun;Chang, Yao-Yun;Chu, Chi-Kuang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.3-8
    • /
    • 2006
  • The next decade promises drastic improvements and additions to global navigation satellite systems (GNSS). Plans for GPS modernization include a civilian code measurement on the L2 frequency and a new L5 signal at 1176.45 MHz. Current speculations indicate that a fully operational constellation with these improvements could be available by 2013. Simultaneously, the Galileo Joint Undertaking is in the development and validation stages of introducing a parallel GNSS called Galileo. Galileo will also transmit freely available satellite navigation signals on three frequencies and is scheduled to be fully operational as early as 2008. In other words, a dual system receiver (e.g., GPS+GALILEO) for general users can access six civil frequencies transmitted by at least fifty eights navigation satellites in space. The advent of GALILEO and the modernization of GPS raise a lot of attention to the study of the compatibility and interoperability of the two systems. A number of performance analyses have been conducted in a global scale with respect to availability, reliability, accuracy and integrity in different simulated scenarios (such as open sky and urban canyons) for the two systems individually and when integrated. Therefore, the scope of this article aims at providing the technical benefits analysis for Taiwan specifically in terms of the performance indices mentioned above in a local scale, especially in typical urban canyon scenarios. The conclusions gained by this study will be applied by the Land Survey Bureau of Taiwanese as the guideline for developing future GNSS tracking facilities and dual GNSS processing module for precise surveying applications in static and kinematic modes.

  • PDF

Analysis and Prospects of Spatial information Technologies using Scenario based Roadmapping (시나리오기반 로드맵을 이용한 국토정보기술의 분석 및 전망)

  • Lee, Sang-Hoon;Jang, Yong-Gu;Koo, Jee-Hee
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.295-299
    • /
    • 2007
  • Today, ubiquitous technology (e.g. computers or networked devices pervade everywhere we are) has enlarged by great advancement of information and communication technologies. If ubiquitous technologies is applied to, innovation of spatial information technology is expected. traditional spatial information technologies such as survey, GIS, GPS, LBS, and RS and ubiquitous technology gradual1y have been converged. The aim of this study is to create shared visions in spatial information technologies by scenario based roadmapping. So, we surveyed the state of the art in main spatial information technologies, market status and patent map. Consequently, prospects of spatial information technologies is suggested. The aim of 1st and 2nd NGIS project focused on map supplier was to develop digital map(e.g. framework data, various thematic map). As a result, the best technology of digital mapping is achieved in the world. But, there is not enough to develop GIS and LBS solution. Current market in GIS S/W and Telematics is about 384billon won and 250billion won. a patent is applied in the order, like a USA(1571case, 47%), Japan(883case, 26%), EU(478case, 14%), Korea(446case, 13%). In the future, spatial information technology fused on ubiquitous technology will be focused on user's demand and developing convenience context. The developing target will be realtime monitoring of 3D spatial data based on high resolution coordinate system, sharing and supplying multi-sensor data considered users demand, location service by ubiquitous technologies.

  • PDF

IoT-based Guerrilla Sensor with Mobile Web for Risk Reduction

  • Chang, Ki Tae;Lee, Jin Duk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.177-184
    • /
    • 2018
  • In case that limited resources can be mobilized, non-structural countermeasures such as 'monitoring using Information and Communication Technology might be one of solutions to mitigate disaster risks. Having established the monitoring system, operational and maintenance costs to maximize the effectiveness might trouble the authority concerned or duty attendant who is in charge. In this respect, "Guerrilla Sensor" would be very cost effective because of the inherent mobility characteristic. The sensor device with the IRIS camera and GPS (Global Positioning System) equipped, is basically battery-operated and communicates with WCDMA (Wideband Code Division Multiple Access). It has a strong advantage of capabilities for 'Disaster Response' with immediate and prompt action on the spot, making the best use of IoT (Internet of Things), especially with the mobile web. This paper will explain how the sensor system works in real-time GIS (Geographic Information System) pinpointing the exact location of the abnormal movement/ground displacement and notifying the registered users via SMS (Short Message Service). Real time monitoring with early warning and evaluation of current situations with LBS (Location Based Service), live image and data information can help to reduce the disaster impact. Installation of Guerrilla sensor for a real site application at Gimcheon, South Korea is also reported.

Accuracy Improvement of KOMPSAT-3 DEM Using Previous DEMs without Ground Control Points

  • Lee, Hyoseong;Park, Byung-Wook;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.241-248
    • /
    • 2017
  • GCPs (Ground Control Points) are needed to correct the DEM (Digital Elevation Model) produced from high-resolution satellite images and the RPC (Rational Polynomial Coefficient). It is difficult to acquire the GCPs through field surveys such as GPS surveys and to read the image coordinates corresponding to the GCPs. In addition, GCPs cannot cover the entire image of the test site, and the RPC correction results may be influenced by the arrangement and distribution of the GCPs in the image. Therefore, a new method for the RPC correction is needed. In this study, an LHD (Least-squares Height Difference) DEM matching method was applied using previous DEMs: SRTM DEM, digital map DEM, and corrected IKONOS DEM. This was carried out to correct the DEM produced from KOMPSAT-3 satellite images and the provided RPC without GCPs. The IKONOS DEM had the highest accuracy, and the height accuracy was about ${\pm}3m$ RMSE in a mountainous area and about ${\pm}2m$ RMSE in an area with only low heights.

Dynamic Position of Vehicles using AHRS IMU Sense (AHRS IMU 센서를 이용한 이동체의 동적 위치 결정)

  • Back Ki-Suk;Lee Jong-Chool;Hong Soon-Hyun;Cha Sung-Yeoul
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.77-81
    • /
    • 2006
  • GPS cannot determine random errors such as multipath and signal cutoff caused by surrounding environment that determines the visibility of satellites and the speed of data creation and transmission is lower than the speed of vehicles, it is difficult to determine accurate dynamic positions. Thus this study purposed to implement a method of deciding the accurate dynamic position of vehicles by combining AHRS (Attitude Heading Reference System) IMU (Initial Measurement Unit) based on low-priced MEMS (Micro Electro Mechanical System) in order to provide the information of attitude, position and speed at a high transmission rate without external help. This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. The roll angle was $y=(A{\times}10^{-6})x^2 -(B{\times}10^{-5})x+Cr{\times}10^{-2}$ and the pitch angle was $y=(A{\times}10^{-6})x^2-(B{\times}10^{-7})x+C{\times}10^{-2}$, each of which was derived from second-degree polynomial regression analysis. It was also found that the heading angle was stabilized with variation less than $1^{\circ}$ after 60 seconds.

  • PDF

Development of Remote Control Robot-ship for Measuring Water Depth (원격수심측정을 위한 로봇시스템의 개발)

  • Choi, Byoung-Gil;Cho, Kwang-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.409-417
    • /
    • 2005
  • This study is aimed to develop a remote control robot-ship system using wireless communication and DGPS, which it is an automatic system for measuring exact depth and bed topography of reservoir or dam. Robot-ship is equipped with GPS and echosounder, and it is controled remotely using wireless internet. Robot-ship is consist of frame, each module and control board. Control segment is consisted of a processing system for positioning data and remote control system. A wireless communication system is developed which can communicate interactively between robot-ship and control segment, and it is developed in two channel system of RF modem and wireless internet. The robot-ship could be used acquire economically and exactly the water depth and bed topography of reservoirs, dams, rivers and so on.

Analysis of the Effects of Three Line Scanner's Focal Length Bias (Three Line Scanner의 초점거리 오차의 영향에 관한 연구)

  • Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The positions, attitudes, and internal orientation parameters of three line scanners are critical factors in order to acquire the accurate location of objects on the ground. Based on the assumption that positions and attitudes of the sensors are derived either from direct geo-referencing which of using Global Positioning Systems (GPS) and Inertial Navigation Systems (INS), or from indirect geo-referencing which of using Ground Control Points (GCPs), this paper describes on biased effects of Internal Orientation Parameter (IOP) on the ground. The research concentrated on geometrical explanations of effects from different focal length biases on the ground. The Synthetic data was collected by reasonable flight trajectories and attitudes of three line scanners. The result of experiments demonstrated that the focal length bias in case of indirect geo-referencing does not have critical influences on the quality of reconstructed ground space. Also, the relationships between IO parameters and EO parameters were found by the correlation analysis. In fact, the focal length bias in case of the direct geo-referencing caused significant errors on coordinates of reconstructed objects. The RMSE values along the vertical direction and the amount of focal length bias turned out to be almost perfect linear relationship.

Precise Estimation of Vertical Position Displacement by Replacement of CORS Antennas (위성기준점 안테나교체에 따른 수직위치 변동량의 정밀산정)

  • Jung, Kwang-Ho;Lee, Young-Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.343-352
    • /
    • 2012
  • In order to precisely determine the vertical displacements of CORS antenna phase centers caused by their replacement, intensive research has been carried out in this paper throughout processing GPS measurements made before and after the events. After applying the estimated displacement in the data processing, results show that coordinate repeatability of the vertical component is able to be 7.9mm on average. Comparing with results (e.g., 23.5mm) without applying the displacement, it was possible to conclude that these accuracies are significantly improved, which is equivalent to those before the event of the replacement.

The Development of PDA_based Mapping System Using Totalstation (토털스테이션을 이용한 PDA기반의 매핑시스템 개발)

  • Bae, Sang-Ho;Lee, Young-Geol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.11-17
    • /
    • 2005
  • This study is to improve the modification of survey data and efficiency of update using digital map based on PDA_based surveying mapping system. This object is achieved by developing wireless communication module of PDA which is adaptable to Totalstation, and contents for its usage. It is achieved by drawing up transformation module of dxf file to editing the text file and the drawing. And it is achieved by drawing up modification module to layer control. This system will be efficiently used to surveying parts of spatial location information for real time mapping ind point positioning in field work.

  • PDF

Adjustment Computation of the National Fundamental Stations Using 3-D Baseline Vectors(KTRF94) (3차원 기선벡터망 조정기법에 의한 국가기본점의 성과산정(KTRF94))

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 1998
  • In year 1996, the National Geography Institute(NGI) carried out a National Fundamental Network survey. A total of 220 baselines between 31 stations were occupied that the baseline length is 40 km-120 km(mean 67.4 km). A minimally constrained network adjustment with three dimensional baseline vectors, was carried out holding geocentric ITRF94 coordinates of the station SUWON which are determined by eccentric observations from the VLBI station. This paper shows KTRF94 coordinates of fundamental stations which accuracies are estimated 1 cm in horizontal and 3 cm in vertical. Also, the coordinates are compared to WGS84 and/or KGS95.

  • PDF