• 제목/요약/키워드: GPS Sonde

검색결과 4건 처리시간 0.016초

악천후시 GPS PWV의 측정 정밀도 검증 및 GPS PWV 변화도 작성 (Precision Evaluation of GPS PWV and Production of GPS PWV Tomograph during Foul Weather)

  • 윤홍식;송동섭
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 춘계학술발표회 논문집
    • /
    • pp.69-74
    • /
    • 2003
  • GPS/Meteorology technique for PWV monitoring is currently actively being researched an advanced nation. But, there is no detailed research on an evaluation of precision of GPS derived PWV measurements during the period of foul weather condition. Here, we deal with the precision of GPS derived PWV during the passage of Typhoon RUSA. Typhoon RUSA which caused a series damage was passed over in Korea from August 30 to September 1, 2002. We compared th tropospheric wet delay estimated from GPS observation and radio-sonde data at four sites(Suwon, Kwangju, Taegu, Cheju). The mean standard deviation of PWV differences at each site is ${\pm}$0.005mm. We also obtained GPS PWV at 13 GPS permanent stations(Seoul, Wonju, Seosan, Sangju, Junju, Cheongju, Taegu, Wuljin, Jinju, Daejeon, Mokpo, Sokcho, Jeju). GPS PWV time series shows, in general, peak value before and during th passage of RUSA, and low after the RUSA. GPS PWV peak time at each station is related to the progress of a typhoon RUSA. We obtained very similar result as we compare GMS satellite image with tomograph using GPS PWV and we could present th possibility of practical use by numerical model for weather forecast.

  • PDF

오일러 방법으로 원격 측정된 유체운동의 속도 산출과 정확도 평가 (Retrieval of Remotely Sensed Fluid Velocity and Esimation of Its Accuracy by Eulerian Measurement)

  • 김민성;이경훈;권병혁;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.151-156
    • /
    • 2021
  • 지구 유체운동의 속력과 방향은 전자기파를 이용한 원격탐사 방법으로 측정된다. UHF 레이더와 GPS 존데를 이용하여 고도별 유체의 속도를 각각 오일러 측정 방법과 라그랑지 측정 방법으로 산출하였다. 대기의 운동 방향인 풍향은 바람이 불어오는 쪽으로 표시하고, 0° - 360°의 순환값을 사용하기 때문에 통계적 분석에 주의가 필요하다. 계산 조건의 설정에 따라 발생하는 오류를 제시하였고, 수정된 비교 결과의 정밀도는 400% 까지 향상하였다.

Observed characteristics of tropical cyclone vertical wind profiles

  • Giammanco, Ian M.;Schroeder, John L.;Powell, Mark D.
    • Wind and Structures
    • /
    • 제15권1호
    • /
    • pp.65-86
    • /
    • 2012
  • Over the last decade substantial improvements have been made in our ability to observe the tropical cyclone boundary layer. Low-level wind speed maxima have been frequently observed in Global Positioning System dropwindsonde (GPS sonde) profiles. Data from GPS sondes and coastal Doppler radars were employed to evaluate the characteristics of tropical cyclone vertical wind profiles in open ocean conditions and at landfall. Changes to the mean vertical wind profile were observed azimuthally and with decreasing radial distance toward the cyclone center. Wind profiles within the hurricane boundary layer exhibited a logarithmic increase with height up to the depth of the wind maximum.

GPS 가강수량 산출을 위한 최소 관측세션 지속시간에 대한 분석 (An Analysis of the Least Observing-Session Duration of GPS for the Retrieval of Precipitable Water Vapor)

  • 김유준;한상옥;김기훈;김선정;김건태;김병곤
    • 대기
    • /
    • 제24권3호
    • /
    • pp.391-402
    • /
    • 2014
  • This study investigated the performances of precipitable water vapor (PWV) retrieval from the sets of ground global positioning system (GPS) signals, each of which had different length of observing-session duration, for the purpose of obtaining as short session duration as possible that is required at the least for appropriate retrieval of the PWV for meteorological usage. The shorter duration is highly desirable to make the most use of the GPS instrument on board the mobile observation vehicle making measurements place by place. First, using Bernese 5.0 software the PWV retrieval was conducted with the data sets of GPS signals archived continuously in 30 seconds interval during 2-month period of January and February, 2012 at Bukgangneung site. Each of the PWVs produced independently using different session durations was compared to that of radio-sonde launched at the same GPS location, a Bukgangneung site. Second, the same procedure was done using the data sets obtained from the mobile observation vehicle that was operating at Boseong area in Jeonnam province during Changma observation campaign in 2013, and the results were compared to that at Bukgangneung site. The results showed that as the observing-session duration increased the retrieval errors decreased with the dramatic change happening between 3 and 4 hours of the duration. On average, the root mean square error (RMSE) of the retrieved PWV was around 1 mm for the durations of greater than 4 hours. The results at both the Bukgangneung (fixed site) and Boseong (mobile vehicle) seemed to be fairly comparable with each other. From this study it is believed that at least 4 hours of observing-session duration is needed for the retrieval of PWV from the ground GPS for meteorological usage using Bernese 5.0 software.