• 제목/요약/키워드: GPS Sensor correction

검색결과 33건 처리시간 0.025초

데이터베이스 기반 GPS 위치 보정 시스템 (Database based Global Positioning System Correction)

  • 문준호;최혁두;박남훈;김종희;박용운;김은태
    • 로봇학회논문지
    • /
    • 제7권3호
    • /
    • pp.205-215
    • /
    • 2012
  • A GPS sensor is widely used in many areas such as navigation, or air traffic control. Particularly, the car navigation system is equipped with GPS sensor for locational information. However, when a car goes through a tunnel, forest, or built-up area, GPS receiver cannot get the enough number of satellite signals. In these situations, a GPS receiver does not reliably work. A GPS error can be formulated by sum of bias error and sensor noise. The bias error is generated by the geometric arrangement of satellites and sensor noise error is generated by the corrupted signal noise of receiver. To enhance GPS sensor accuracy, these two kinds of errors have to be removed. In this research, we make the road database which includes Road Database File (RDF). RDF includes road information such as road connection, road condition, coordinates of roads, lanes, and stop lines. Among the information, we use the stop line coordinates as a feature point to correct the GPS bias error. If the relative distance and angle of a stop line from a car are detected and the detected stop line can be associated with one of the stop lines in the database, we can measure the bias error and correct the car's location. To remove the other GPS error, sensor noise, the Kalman filter algorithm is used. Additionally, using the RDF, we can get the information of the road where the car belongs. It can be used to help the GPS correction algorithm or to give useful information to users.

기상자료 보간 방법에 의한 GPS기반 가강수량 산출 정확도 분석 (Accuracy Analysis of GPS-derived Precipitable Water Vapor According to Interpolation Methods of Meteorological Data)

  • 김두식;원지혜;김혜인;김경희;박관동
    • Spatial Information Research
    • /
    • 제18권4호
    • /
    • pp.33-41
    • /
    • 2010
  • 우리나라에는 100여개의 GPS 상시관측소가 설치되어 있으나 대략 10개의 관측소만이 GPS 전용 기상센서를 보유하고 있다. 따라서 전국을 대상으로 하는 GPS 가강수량 산출을 위해서는 주변 AWS의 가상자료 보간에 의한 GPS 관측소 기상정보의 생성이 필요하다. 이 연구에서는 가상자료 보간 방법인 역해면경정과 크리깅의 보간 정확도를 분석하였다. 그 결과 역해변경정법의 RMSE가 기압의 경우 약 7배, 기온의 경우 약 2배 더 정확함을 확인하였다. PWV 정확도 분석을 위해 역해면경정법으로 보간된 기상자료와 GPS 관측자료를 이용해 2008년 여름철에 대한 GPS PWV를 산출하였다. 보간 기상 자료를 이용한 GPS PWV를 GPS 전용 기상센서의 값을 사용한 PWV, 라디오존데 PWV와 비교하였다. 비교 결과 보간 기상자료를 이용한 GPS PWV 가 요구 정확도 3mm이내를 만족함을 확인하였다.

다중 GPS 삼각측량보정법을 이용한 LoRaWAN기반 실시간 해류관측시스템 개발 (Development of a LoRaWAN-based Real-time Ocean-current Draft Observation System using a multi-GPS Triangulation Method Correction Algorithm)

  • 강영관;이우진;임재홍
    • 센서학회지
    • /
    • 제31권1호
    • /
    • pp.64-68
    • /
    • 2022
  • Herein, we propose a LoRaWAN-based small draft system that can measure the ocean current flow (speed, direction, and distance) in real time at the request of the Coast Guard to develop a device that can promptly find survivors at sea. This system has been implemented and verified in the early stages of rescue after maritime vessel accidents, which are frequent. GPS signals often transmit considerable errors, so correction algorithms using the improved triangulation method algorithm are required to accurately indicate the direction of currents in real time. This paper is structured in the following manner. The introduction section elucidates rescue activities in the case of a maritime accident. Chapter 2 explains the characteristics and main parameters of the GPS surveying technique and LoRaWAN communication, which are related studies. It explains and expands on the critical distance error correction algorithm for GPS signals and its improvement. Chapter 3 discusses the design and analysis of small draft buoys. Chapter 4 presents the testing and validation of the implemented system in both onshore and offshore environments. Finally, Section 5 concludes the study with the expected impact and effects in the future.

차량 움직임 정보를 이용한 GPS/DR 차량항법시스템 성능향상 (Performance Improvement of GPS/DR Car Navigation System Using Vehicle Movement Information)

  • 송종화;김광훈;지규인;이연석
    • 로봇학회논문지
    • /
    • 제5권1호
    • /
    • pp.55-63
    • /
    • 2010
  • This paper describes performance improvement of GPS/DR Integration system using area decision algorithm and vehicle movement information. In GPS signal blockage area, i.e., tunnel and underground parking area, DR sensor errors are accumulated and navigation solution is gradually diverged. We use the car movement information according to moving area to correct the DR sensor error. Also, vehicle movement is decided as stop, straight line, turn and movement changing region through DR sensor data analysis. The car experiment is performed to verify the supposed method. The results show that supposed method provides small position and heading error than previous method.

이동로봇의 GPS위치 정보 보정을 위한 파티클 필터 방법 (Particle filter for Correction of GPS location data of a mobile robot)

  • 노성우;김태균;고낙용;배영철
    • 한국전자통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.381-389
    • /
    • 2012
  • 본 논문은 실외환경에서 이동하는 자율주행로봇의 위치추정 문제를 다룬다. 위성 GPS정보와 IMU센서 정보를 보정하여 로봇의 위치를 확률적으로 추정하는 MCL방법을 제안한다. MCL 방법은 로봇의 위치 예측 과정과 센서 정보에 의해 예측된 위치를 보정하는 과정으로 구성된다. 위치 예측을 위해 필요한 모션모델은 이동 로봇이 구동시의 직진 오차와 회전 오차를 포함한다. 보정은 신뢰도 값에 기반한 리샘플링에 의해 이루어진다. 신뢰도 값은 사용된 GPS와 IMU의 센서 모델에 의해 구해진다. 센서 모델을 구하기 위하여 GPS의 오차 범위를 반복 실험을 통해 구하였다. GPS는 로봇의 위치 추정을 위해 사용되며 IMU는 로봇의 이동 방향을 추정하기 위해 사용된다. 본 논문에서 제안한 방법을 실외환경에서의 이동로봇 위치 추정에 적용하였고, 실험결과를 분석하여 제안한 방법을 유효성을 보였다.

GPS/INS Integration using Fuzzy-based Kalman Filtering

  • Lim, Jung-Hyun;Ju, Gwang-Hyeok;Yoo, Chang-Sun;Hong, Sung-Kyung;Kwon, Tae-Yong;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.984-989
    • /
    • 2003
  • The integrated global position system (GPS) and inertial navigation system (INS) has been considered as a cost-effective way of providing an accurate and reliable navigation system for civil and military system. Even the integration of a navigation sensor as a supporting device requires the development of non-traditional approaches and algorithms. The objective of this paper is to assess the feasibility of integrated with GPS and INS information, to provide the navigation capability for long term accuracy of the integrated system. Advanced algorithms are used to integrate the GPS and INS sensor data. That is fuzzy inference system based Weighted Extended Kalman Filter(FWEKF) algorithm INS signal corrections to provided an accurate navigation system of the integrated GPS and INS. Repeatedly, these include INS error, calculated platform corrections using GPS outputs, velocity corrections, position correction and error model estimation for prediction. Therefore, the paper introduces the newly developed technology which is aimed at achieving high accuracy results with integrated system. Finally, in this paper are given the results of simulation tests of the integrated system and the results show very good performance

  • PDF

라즈베리파이를 활용한 블루투스 Smart Ready 구현 및 RSSI 오차 보정 (Bluetooth Smart Ready implementation and RSSI Error Correction using Raspberry)

  • 이성진;문상호
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.280-286
    • /
    • 2022
  • In order to efficiently collect data, it is essential to locate the facilities and analyze the movement data. The current technology for location collection can collect data using a GPS sensor, but GPS has a strong straightness and low diffraction and reflectance, making it difficult for indoor positioning. In the case of indoor positioning, the location is determined by using wireless network technologies such as Wifi, but there is a problem with low accuracy as the error range reaches 20 to 30 m. In this paper, using BLE 4.2 built in Raspberry Pi, we implement Bluetooth Smart Ready. In detail, a beacon was produced for Advertise, and an experiment was conducted to support the serial port for data transmission/reception. In addition, advertise mode and connection mode were implemented at the same time, and a 3-count gradual algorithm and a quadrangular positioning algorithm were implemented for Bluetooth RSSI error correction. As a result of the experiment, the average error was improved compared to the first correction, and the error rate was also improved compared to before the correction, confirming that the error rate for position measurement was significantly improved.

도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘 (LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving)

  • 노한석;이현성;이경수
    • 자동차안전학회지
    • /
    • 제14권2호
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

GPS 기반 추적레이더 실시간 바이어스 추정 및 비동기 정보융합을 통한 발사체 추적 성능 개선 (Performance enhancement of launch vehicle tracking using GPS-based multiple radar bias estimation and sensor fusion)

  • 송하룡
    • 한국산업정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.47-56
    • /
    • 2015
  • 다중센서 시스템에서 센서 바이어스를 제거하는 센서 등록 과정은 각각의 센서가 공통된 좌표를 갖게 하기 위해 반드시 필요하다. 만약 센서 등록 과정을 적절하게 처리하지 않는다면, 거대한 추적 에러 또는 같은 목표물을 향한 다수의 허수 트랙이 발생하게 되어 추적에 실패하게 된다. 특히, 발사체 추적에 있어서 각각의 추적 장비는 반드시 적절한 센서등록 과정을 거쳐야 하며, 이 후 다중센서 융합알고리즘을 활용하면 발사체 추적 성능을 높이고 다중 추적 시스템에 정확한 지향입력으로 활용 가능하게 된다. 본 논문에서는 실시간 바이어스 추정/제거 알고리즘과 비동기 다중 센서 융합 기법을 제안하였다. 제안된 바이어스 추정 알고리즘은 GPS와 다중 레이더 간의 의사 바이어스 측정치를 활용하였고, 비동기 센서 융합알고리즘 적용을 통해 추적 성능을 향상하였다.

On-line Real Time Soil Sensor

  • Shibusawa, S.
    • Agricultural and Biosystems Engineering
    • /
    • 제4권1호
    • /
    • pp.28-33
    • /
    • 2003
  • Achievements in the real-time soil spectro-photometer are: an improved soil penetrator to ensure a uniform soil surface under high speed conditions, real-time collecting of underground soil reflectance, getting underground soil color images, use of a RTK-GPS, and all units are arranged for compactness. With the soil spectrophotometer, field experiments were conducted in a 0.5 ha paddy field. With the original reflectance, averaging and multiple scatter correction, Kubelka-Munk (KM) transformation as soil absorption, its 1st and 2nd derivatives were calculated. When the spectra was highly correlated with the soil parameters, stepwise regression analysis was conducted. Results include the best prediction models for moisture, soil organic matter (SOM), nitrate nitrogen (NO$_3$-N), pH and electric conductivity (EC), and soil maps obtained by block kriging analysis.

  • PDF