• Title/Summary/Keyword: GPS Navigation Solution

Search Result 110, Processing Time 0.023 seconds

The AGPS/INS Integrated Navigation System Design Using Triple Difference Technique (삼중 차분 기법을 이용한 AGPS/INS 통합 항법 시스템 설계)

  • 오상헌;박찬식;이상정;황동환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.736-744
    • /
    • 2003
  • The GPS attitude output or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS information is directly applied to the AGPS/INS integration system, the performance of the system can be rapidly degraded. This paper proposes an AGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which inertial information is combined. Computer simulations and van test were performed to verify the proposed integration system. The results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correct and the cycle slip occurs.

Implementation of GPS/Galileo Integrated Navigation Algorithm and Analysis of Different Time-Coordinate Effect (GPS/Galileo 통합항법알고리즘 구현 및 시각 및 좌표계차이에 따른 영향분석)

  • Song, Jong-Hwa;Jee, Gyu-In;Jeong, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • Galileo is the Europe's global navigation satellite system corresponding to the GPS. The GIOVE-A test experiment has been finished and the second test satellite GIOVE-B will be launched soon. The integration of GPS and Galileo lead an increase of visible satellite number. We can obtain an improved navigation performance in signal blocked area such as urban or forest. GPS and Galileo have each time-coordinate system and use the different error model to calculate the navigation solution. In this paper, we studied on GPS and Galileo channel error model and time-coordinate system. Using this result, we implement the integrated navigation algorithm. In simulation, we analyzed the navigation error caused by time and coordinate disagreement and verified performance of integrated navigation algorithm in terms of visible satellite number, DOP(Dilution of Pression) and position error.

A Design of the IMM Filter for Improving Position Error of the INS / GPS Integrated System (INS/GPS 통합 항법 시스템의 위치 오차 개선을 위한 IMM 필터 설계)

  • Baek, Seung-jun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • In this paper, interacting multiple model (IMM) filter was designed that guarantees a stable navigation performance even in the unstable satellite navigation position. In order to design IMM filter in INS / GPS integrated navigation system, sub filter of the IMM filter is defined as Kalman filter. In the IMM filter configuration, two subfilters are determined. Each Kalman filter defines the six-teenth state composed of position, velocity, attitude, and sensor error from the INS error equation and the states additionally derived in case of the coloured measurement noise. In order to verify the performance of the proposed filter, we compared the performance how the filter works in the presence of arbitrary error in GPS navigation solution. The Monte Carlo simulation was performed 100 times and the results were compared with the root mean square(RMS). The results show that the proposed method is stable against errors and show fast convergence.

A Combination Method of Trajectory Data using Correlated Direction of Collected GPS Data (수집한 GPS데이터의 상호방향성을 이용한 경로데이터 조합방법)

  • Koo, Kwang Min;Park, Heemin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1636-1645
    • /
    • 2016
  • In navigation systems that use collected trajectory for routing, the number and diversity of trajectory data are crucial despite the infeasible limitation which is that all routes should be collected in person. This paper suggests an algorithm combining trajectories only by collected GPS data and generating new routes for solving this problem. Using distance between two trajectories, the algorithm estimates road intersection, in which it also predicts the correlated direction of them with geographical coordinates and makes a decision to combine them by the correlated direction. With combined and generated trajectory data, this combination way allows trajectory-based navigation to guide more and better routes. In our study, this solution has been introduced. However, the ways in which correlated direction is decided and post-process works have been revised to use the sequential pattern of triangles' area GPS information between two trajectories makes in road intersection and intersection among sets comprised of GPS points. This, as a result, reduces unnecessary combinations resulting redundant outputs and enhances the accuracy of estimating correlated direction than before.

Study on Two-Failure GPS RAIM Problem (GPS RAIM에서의 2개 파라미터 고장진단에 대한 연구)

  • 유창선;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.194-194
    • /
    • 2000
  • In aviation navigation by GPS, requirements on availability and integrity must be absolutely satisfied for safety. Current study on accomplishing this integrity includes RAM(Receiver Autonomous Integrity Monitoring), checking integrity internally in GPS receiver itself. However RAIM techniques have be investigated and presented under assumption that there is included only one fault in measurements from GPS, In case of multiple fault, an interaction among bias errors sometimes results in decreasing the effect of multiple fault. This may make an exact fault detection and identification difficult, and study on mutiple fault RAIM focused on. This paper explains the reasons that techniques applied on single fault are not adequate to extend directly to two faults case and shows that RAIM solution on two fault may be given in revised parity space.

  • PDF

Field research for Advanced GPS Network RTK Solution

  • Kang, Sang-Gu;Cranenbroeck, Joel van;Oh, Sang-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.411-415
    • /
    • 2006
  • In recent years there has been considerable interest in the network GPS RTK surveying. Single RTK has some limit in long distance and it has an accuracy problem depend on the baseline length. The significant improvement of GPS network technology, RTCM V3.0 correction format and telecommunication technology can eliminate the weakness of single GPS RTK. This paper is the practical field result of GPS network RTK.

  • PDF

A Study on the Measurement Time-Delay Estimation of Tightly-Coupled GPS/INS system (강결합방식의 GPS/INS 시스템에 대한 측정치 시간지연 추정 연구)

  • Lee, Youn-Seon;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.116-123
    • /
    • 2008
  • In this paper we study the performance of the measurement time-delay estimation of tightly-coupled GPS/INS(Global positioning system/Inertial Navigation system) system. Generally, the heading error estimation performance of loosely-coupled GPS/INS system using GPS's Navigation Solution is poor. In the case of tightly-coupled GPS/INS system using pseudo-range and pseudo-range rate, the heading error estimation performance is better. However, the time-delay error on the measurement(pseudo-range rate) make the heading error estimation performance degraded. So that, we propose the time-delay model on the measurement and compose the time-delay estimator. And we confirm that the heading error estimation performance in the case of measurement time-delay existence is similar with the case of no-delay by Monte-Carlo simulation.

Development of a Preliminary Formation-Flying Testbed for Satellite Relative Navigation and Control

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.26.3-26.3
    • /
    • 2008
  • This research develops a GPS-based formation-flying testbed (FFTB) for formation navigation and control. The FFTB is a simulator in which spacecraft simulation and modeling software and loop test capabilities are integrated for test and evaluation of spacecraft navigation and formation control technologies. The FFTB is composed of a GPS measurement simulation computer, flight computer, environmental computer for providing true environment data and 3D visualization computer. The testbed can be simulated with one to two spacecraft, thus enabling a variety of navigation and control algorithms to be evaluated. In a formation flying simulation, GPS measurement are generated by a GPS measurement simulator to produce pseudorange, carrier phase measurements, which are collected and exchanged by the flight processors and subsequently processed in a navigation filter to generate relative and/or absolute state estimates. These state estimates are the fed into control algorithm, which are used to generate maneuvers required to maintain the formation. In this manner, the flight processor also serves as a test platform for candidate formation control algorithm. Such maneuvers are fed back through the controller and applied to the modeled truth trajectories to close simulation loop. Currently, The FFTB has a closed-loop capability of simulating a satellite navigation solution using software based GPS measurement, we move forward to improve using SPIRENT GPS RF signal simulator and space-based GPS receiver

  • PDF

Design of Multi-Sensor-Based Open Architecture Integrated Navigation System for Localization of UGV

  • Choi, Ji-Hoon;Oh, Sang Heon;Kim, Hyo Seok;Lee, Yong Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • The UGV is one of the special field robot developed for mine detection, surveillance and transportation. To achieve successfully the missions of the UGV, the accurate and reliable navigation data should be provided. This paper presents design and implementation of multi-sensor-based open architecture integrated navigation for localization of UGV. The presented architecture hierarchically classifies the integrated system into four layers and data communications between layers are based on the distributed object oriented middleware. The navigation manager determines the navigation mode with the QoS information of each navigation sensor and the integrated filter performs the navigation mode-based data fusion in the filtering process. Also, all navigation variables including the filter parameters and QoS of navigation data can be modified in GUI and consequently, the user can operate the integrated navigation system more usefully. The conventional GPS/INS integrated system does not guarantee the long-term reliability of localization when GPS solution is not available by signal blockage and intentional jamming in outdoor environment. The presented integration algorithm, however, based on the adaptive federated filter structure with FDI algorithm can integrate effectively the output of multi-sensor such as 3D LADAR, vision, odometer, magnetic compass and zero velocity to enhance the accuracy of localization result in the case that GPS is unavailable. The field test was carried out with the UGV and the test results show that the presented integrated navigation system can provide more robust and accurate localization performance than the conventional GPS/INS integrated system in outdoor environments.

Proposed Test Method for Verification of Survivability Improvement of KASS Augmented Navigation of a Beam-formed GPS Receiver (빔포밍 GPS 위성항법장치의 KASS 보정항법 생존성 향상을 검증하기 위한 시험평가 방법 제안)

  • Junwoo Jung;Hyunhee Won;Daeyoung Park;Seungmin Kang;Jonggyu Go;Seungbok Kwon;Kwi Woo Park;Bongwoo Jo;Woogeun Ahn;Sung Wook Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • The Korea Augmentation Satellite System (KASS) satellite was successfully launched and service is being started. By receiving messages transmitted from the KASS satellite, users can employ the messages to improve positioning accuracy or to verify the integrity of Global Positioning System (GPS). In this paper, we propose a test method for a beam-formed GPS receiver developed to improve the survivability of KASS augmented messages that can enhance positioning accuracy even in an environment with jamming or interfering signals. Through the test method proposed in this paper, quantitative verification is performed for a beam-formed GPS receiver aimed at maintaining the augmented navigation solution to which KASS augmented messages are applied by tracking the KASS signal as much as possible under conditions where the jamming signal strength is gradually increasing. In addition, the proposed test method includes three conditions; first, a static lab test method for repeated verification of functions under the same conditions; second, a static outdoor test method for performance verification in an operating environment of a platform equipped with the beam-formed GPS receiver; and finally, a dynamic lab test method for performance verification of a moving platform equipped with the beam-formed GPS receiver toward a jammer. In this paper, we propose a method for simulating the jamming signal incident direction through the phase delay of an RF cable designed to prevent unintentional jamming signal emission in both lab and outdoor tests, and a method of applying test software for injecting a jamming signal to compare the survivability performance consistently according to the presence or absence of beamforming signal processing. Through the proposed test method, it was verified that the augmented navigation solution could be output for a longer time period when the beamforming signal processing was applied to the KASS satellite signal in the beam-formed GPS receiver.