• Title/Summary/Keyword: GPS Antenna array

Search Result 55, Processing Time 0.024 seconds

A GPS Receiver Structure for Multi-beamforming (다중 빔 형성을 위한 GPS 수신기 구조)

  • Lee, Geon-Woo;Lim, Deok-Won;Lee, Chang-Won;Park, Chan-Sik;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.182-190
    • /
    • 2009
  • GPS receivers can be disrupted by intentional or unintentional jamming, then it is unable to receive GPS signals and it is impossible to get the correct navigation results. Anti-jamming schemes using array antennas are being studied well due to high performance of those, and the efforts to apply them to GPS receiver are also being done. A GPS receiver structure for a multiple beam-forming scheme among those schemes has been proposed in this paper, and the performance is also compared with that using a general GPS receiver structure. For a general GPS receiver structure, each satellite signal which is formed by a beam-forming scheme is summed to be processed in a part of digital signal processing. For a proposed GPS receiver structure, however, each satellite signal is respectively processed by a designated channel in a part of digital signal processing. Finally, it is confirmed that the proposed GPS receiver structure is superior to a general GPS receiver structure in a point of the carrier to noise power ratio and the navigation accuracy using a software platform.

Performance analysis of DoA estimation algorithm using a circular array antenna (원형 배열 안테나의 DoA 추정 알고리즘 성능 분석)

  • Lim, Seung-Gag;Kang, Dae-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.395-400
    • /
    • 2008
  • This paper relates to the performance analysis of DoA estimation algorithm in 2-dimensional circular array antenna for the receiving of GPS signal which is used for the performance improvement by elimination of jammer signal. By performing the spatial filtering after the DoA estimation in array antenna, the quality of receiving signal can improve by the nulling of jammer signal from the undesired direction and the forming of beam from the desired direction. In this paper, the MUSIC and MinNorm algorithm used for DoA estimation were applied after fixing the angle and power of jammer signal in 4 element and 7 element circular array antenna. In order to performance analysis, the estimation result and estimation error were computed by computer simulation. As a result, the MUSIC and MinNorm were fairly good in azimuth and elevation angle estimation of DoA in case of good signal to noise ratio and the MUSIC has better performance compared to MinNorm in case of poor signal to noise ratio.

An analysis of GPS anti-jamming methods in spatial and temporal domain

  • Cho, Hun-Soo;Im, Sung-Hyuck;Jee, Gyu-In
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.341-345
    • /
    • 2006
  • The GPS is widely used in various parts, therefore it is required higher integrity and continuity. These integrity and continuity are threatened by outer jamming signals which are intended or not. And various anti-jamming ways have been studied to remove these jamming signals. In this paper, we are going to test the efficiency of the anti-jamming algorithm in space and time-space domain, and analyze

  • PDF

Observability Analysis of Alignment Errors in GPS/INS

  • Lee Mun Ki;Hong Sinpyo;Lee Man Hyung;Kwon Sun-Hong;Chun Ho-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1253-1267
    • /
    • 2005
  • Misalignment can be an important problem in the integration of GPS/INS. Observability analysis of the alignment errors in the integration of low-grade inertial sensors and multi-antenna GPS is presented in this paper. A control-theoretic approach is adopted to study the observability of time-varying error dynamics models. The relationship between vehicle motions and the observability of the errors in the lever arm and relative attitude between GPS antenna array and IMU is given. It is shown that alignment errors can be made observable through maneuvering. The change of acceleration makes the components of the relative attitude error that are orthogonal to the direction of the acceleration change observable. The change of angular velocity makes the components of the lever arm error that are orthogonal to the direction of the angular velocity observable. The motion of constant angular velocity has no influence on the estimation of the lever arm.

Performance Analysis of Mode Switching Scheme for Reduction of Phase Distortion in GPS Anti-jamming Equipment Based on STAP Algorithm

  • Jung, Junwoo;Yang, Gi-Jung;Park, Sungyeol;Kang, Haengik;Kwon, Seungbok;Kim, Kap Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • A method that applies space-time adaptive signal processing (STAP) algorithm based on an array antenna consisting of multiple antenna elements has been known to be effective to remove wide-band jamming signals in GPS receivers. However, the occurrence of phase distortion in navigation signals has been a problem when navigation signals, from which jamming signals are removed using STAP, are supplied to global positioning system (GPS) receivers. This paper verified the navigation performance degradation as a result of phase distortion. To mitigate this phenomenon, this paper proposes a mode switching scheme, in which a bypass mode is adopted to make the best use of the tracking performance of receivers without performing signal processing when jamming signals are not present or weak, and a STAP mode is employed when jamming signals exceed the threshold value. In this paper, the mode switching scheme is proposed for two environments: when receivers are stationary, and when receivers are moving. This paper confirmed that the performance of position error improved because phase distortion could be excluded due to STAP if the bypass mode was adopted under a condition where the jamming signal power level was below the threshold value in an environment where receivers were stationary. However, this paper also observed that the navigation failed due to the instability of tracking performance of receivers due to phase distortion that occurred at the switching time, although the number of switching could be reduced dramatically by proposing a dual threshold scheme of on- and off-thresholds that switched a mode due to the array antenna characteristics of varying gains according to the jamming signal incident direction in an environment where receivers were moving. The analysis results verified that running the STAP algorithm at all times is more efficient than the mode switching, in terms of maintaining stable navigation and ensuring position error performance, to remove jamming signals in an environment where receivers were moving.

Design of Microstrip Antenna for Satellite Navigation System Jamming

  • Shin, Jae Yoon;Park, Chong Hwan;Woo, Jong Myung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • This paper proposed a microstrip antenna that can perform jamming of satellite signals from the GPS L5, GLONASS G3, BDS B2 frequency bands (1164 - 1217 MHz) that are employed mainly for military purposes among the GNSS frequencies using unmanned aircrafts over the enemy's sky in time of emergency. The single element in the proposed antenna can be easily mounted to unmanned aircrafts. This study analyzed the characteristics of miniaturization and beam of radiating elements by applying the image theories and perturbation effect to satisfy the uniform level at ${\pm}45^{\circ}$ of beam steering goal due to the phase delay after antenna array. The designed microstrip antenna had a miniaturized radiating element area (x-y plane), which was reduced by 76.3% compared to that of basic microstrip antenna, and its beam width was $190^{\circ}$ in the E-plane and $140^{\circ}$ in the H plane. In addition, the simulation was conducted to determine the characteristics due to the phase delay by arranging the designed single microstrip antenna by $1{\times}4$ array and the results showed that beam steering of ${\pm}45^{\circ}$ is possible in the H-plane on the basis of $0^{\circ}$. Thus, the proposed antenna was verified to be effective in satellite signal jamming in the air as it was attached to the lower end of unmanned aircrafts.

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.

Implementation of ZUPT on RPA Navigation System for GNSS Denied Ground Test

  • Shin, Hyeoncheol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.125-129
    • /
    • 2020
  • In this paper, Zero velocity UPdaTe (ZUPT) is implemented on the navigation system of Remotely Piloted Aircraft for GNSS denied environment. RPA's navigation system suffers from lack or loss of satellite signal while maintenance or ground test inside a hangar. Although some of the hangars install GPS repeaters for indoor tests, the anti-jamming equipment with array antenna blocks the repeater signal regarding them as hostile jamming signal. With ZUPT, an aircraft navigation system can be tested free from the divergence of navigation solution without line-of-sight satellites. The designed ZUPT aided centralized Kalman Filter is implemented on the Embedded GPS&INS and simulated with Captive Flight Test data. The simulation result shows stable navigation solution without GNSS updates.

Performance Analysis of Quaternion-based Least-squares Methods for GPS Attitude Estimation (GPS 자세각 추정을 위한 쿼터니언 기반 최소자승기법의 성능평가)

  • Won, Jong-Hoon;Kim, Hyung-Cheol;Ko, Sun-Jun;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2092-2095
    • /
    • 2001
  • In this paper, the performance of a new alternative form of three-axis attitude estimation algorithm for a rigid body is evaluated via simulation for the situation where the observed vectors are the estimated baselines of a GPS antenna array. This method is derived based on a simple iterative nonlinear least-squares with four elements of quaternion parameter. The representation of quaternion parameters for three-axis attitude of a rigid body is free from singularity problem. The performance of the proposed algorithm is compared with other eight existing methods, such as, Transformation Method (TM), Vector Observation Method (VOM), TRIAD algorithm, two versions of QUaternion ESTimator (QUEST), Singular Value Decomposition (SVD) method, Fast Optimal Attitude Matrix (FOAM), Slower Optimal Matrix Algorithm (SOMA).

  • PDF

The Performance Analysis of Beamforming Algorithm for Anti-Spoofing

  • Choi, Yun Sub;Lee, Sun Yong;Park, Chansik;Ahn, Byoung Sun;Won, Hyun Hee;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.131-136
    • /
    • 2016
  • The present paper shows that beamforming algorithm such as Minimum Variance Distortionless Response (MVDR) based on array antenna signal processing can have not only anti-jamming but also anti-spoofing characteristics. A beam pattern due to the beamforming algorithm strengthens received signal power as it is formed in the incident direction of desired signal. During the process, the effect of unnecessary signals such as spoofing signals can be reduced because the beam pattern reduces received signal power in the incident directions excluding the beam pattern-directed direction. In order to analyze the anti-spoofing effect due to the beamforming algorithm, a software-based simulation environment was configured. An arbitrary error was applied between incident direction of Global Positioning System (GPS) satellite signal and steering vector direction of the beamforming algorithm to analyze the received signal power and required conditions were provided to see the anti-spoofing effect due to the beamforming algorithm. The used antenna was 7-element planar circular array and beam patterns were formed through the MVDR algorithm.