• Title/Summary/Keyword: GPS/INS vertical channel damping loop

Search Result 2, Processing Time 0.019 seconds

State-Space Representation of Complementary Filter and Design of GPS/INS Vertical Channel Damping Loop (보완 필터의 상태 공간 표현식 유도 및 GPS/INS 수직채널 감쇄 루프 설계)

  • Park, Hae-Rhee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.727-732
    • /
    • 2008
  • In this paper, the state-space representation of generalized complimentary filter is proposed. Complementary filter has the suitable structure to merge information from sensors whose frequency regions are complementary. First, the basic concept and structure of complementary filter is introduced. And then the structure of the generalized filter and its state-space representation are proposed. The state-space representation of complementary filter is able to design the complementary filter by applying modern filtering techniques like Kalman filter and $H_{\infty}$ filter. To show the usability of the proposed state-space representation, the design of Inertial Navigation System(INS) vertical channel damping loop using Global Positioning System(GPS) is described. The proposed GPS/INS damping loop lends the structure of Baro/INS(Barometer/INS) vertical channel damping loop that is an application of complementary filter. GPS altitude error has the non-stationary statistics although GPS offers navigation information which is insensitive to time and place. Therefore, $H_{\infty}$ filtering technique is selected for adding robustness to the loop. First, the state-space representation of GPS/INS damping loop is acquired. And next the weighted $H_{\infty}$ norm proposed in order to suitably consider characteristics of sensor errors is used for getting filter gains. Simulation results show that the proposed filter provides better performance than the conventional vertical channel loop design schemes even when error statistics are unknown.

Study on Static Pressure Error Model for Pressure Altitude Correction (기압 고도의 정밀도 향상을 위한 정압 오차 모델에 관한 연구)

  • Jung, Suk-Young;Ahn, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.47-56
    • /
    • 2005
  • In GPS/INS/barometer navigation system for UAV, vertical channel damping loop was introduced to suppress divergence of the vertical axis error of INS, which could be reduced to the level of accuracy of pressure altitude measured by a pitot-static tube. Because static pressure measured by the pitot-static tube depends on the speed and attitude of the vehicle, static pressure error models, based on aerodynamic data from wind tunnel test, CFD analysis, and flight test, were applied to reduce the error of pressure altitude. Through flight tests and sensitivity analyses, the error model using the ratio of differential pressure and static pressure turned out to be superior to the model using only differential pressure, especially in case of high altitude flight. Both models were proposed to compensate the effect of vehicle speed change and used differential and static pressure which could be obtained directly from the output of pressure transducer.