• Title/Summary/Keyword: GPS/INS Integration

Search Result 90, Processing Time 0.025 seconds

Extracting Three-Dimensional Geometric Information of Roads from Integrated Multi-sensor Data using Ground Vehicle Borne System (지상 이동체 기반의 다중 센서 통합 데이터를 활용한 도로의 3차원 기하정보 추출에 관한 연구)

  • Kim, Moon-Gie;Sung, Jung-Gon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.68-79
    • /
    • 2008
  • Ground vehicle borne system which is named RoSSAV(Road Safety Survey and Analysis Vehicle) developed in KICT(Korea Institute of Construction Technology) can collect road geometric data. This system therefore is able to evaluate the road safety and analyze road deficient sections using data collected along the roads. The purpose of this study is to extract road geometric data for 3D road modeling in dangerous road section and The system should be able to quickly provide more accurate data. Various sensors(circular laser scanner, GPS, INS, CCD camera and DMI) are installed in moving object and collect road environment data. Finally, We extract 3d road geometry(center, boundary), road facility and slope using integrated multi-sensor data.

  • PDF

Decentralized Filters for the Formation Flight

  • Song, Eun-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.19-29
    • /
    • 2002
  • Decentralized filtering for a formation flight instrumentation system by INS/GPS integration is considered in this paper. An elaborate tuning method of the measurement noise covariance is suggested to compensate modeling errors caused by decentralizing the extended Kalman filter. It does not require large data transfer between formation vehicles. Covariance analysis exhibits the superior performance of the proposed approach when compared with the existent decentralized filter and the global filter, which has the target-filter performance.

Improving Covariance Based Adaptive Estimation for GPS/INS Integration

  • Ding, Weidong;Wang, Jinling;Rizos, Chris
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.259-264
    • /
    • 2006
  • It is well known that the uncertainty of the covariance parameters of the process noise (Q) and the observation errors (R) has a significant impact on Kalman filtering performance. Q and R influence the weight that the filter applies between the existing process information and the latest measurements. Errors in any of them may result in the filter being suboptimal or even cause it to diverge. The conventional way of determining Q and R requires good a priori knowledge of the process noises and measurement errors, which normally comes from intensive empirical analysis. Many adaptive methods have been developed to overcome the conventional Kalman filter's limitations. Starting from covariance matching principles, an innovative adaptive process noise scaling algorithm has been proposed in this paper. Without artificial or empirical parameters to be set, the proposed adaptive mechanism drives the filter autonomously to the optimal mode. The proposed algorithm has been tested using road test data, showing significant improvements to filtering performance.

  • PDF

Design of Multi-Sensor-Based Open Architecture Integrated Navigation System for Localization of UGV

  • Choi, Ji-Hoon;Oh, Sang Heon;Kim, Hyo Seok;Lee, Yong Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • The UGV is one of the special field robot developed for mine detection, surveillance and transportation. To achieve successfully the missions of the UGV, the accurate and reliable navigation data should be provided. This paper presents design and implementation of multi-sensor-based open architecture integrated navigation for localization of UGV. The presented architecture hierarchically classifies the integrated system into four layers and data communications between layers are based on the distributed object oriented middleware. The navigation manager determines the navigation mode with the QoS information of each navigation sensor and the integrated filter performs the navigation mode-based data fusion in the filtering process. Also, all navigation variables including the filter parameters and QoS of navigation data can be modified in GUI and consequently, the user can operate the integrated navigation system more usefully. The conventional GPS/INS integrated system does not guarantee the long-term reliability of localization when GPS solution is not available by signal blockage and intentional jamming in outdoor environment. The presented integration algorithm, however, based on the adaptive federated filter structure with FDI algorithm can integrate effectively the output of multi-sensor such as 3D LADAR, vision, odometer, magnetic compass and zero velocity to enhance the accuracy of localization result in the case that GPS is unavailable. The field test was carried out with the UGV and the test results show that the presented integrated navigation system can provide more robust and accurate localization performance than the conventional GPS/INS integrated system in outdoor environments.

A Study on the Construction of 3D Cadastral Information by Mobile Mapping System (차량 기반 멀티센서 측량시스템을 이용한 3차원 지적정보 구축에 관한 연구)

  • Min, Kwan Sik;Kim, Jae Myeong;Park, Byung Moon
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this paper, we suggested plan that utilize the mobile mapping system data for constructing 3D cadastral information of roads and buildings effectively. 3D cadastral information means conflation of existing cadastral information and spatial information. It also means 3D land management that can register and manage various spatial information with land information effectively. Technically, geometry information and attribute information by image or radar scanner and location information of geographic features calculated by GPS/INS integration technology are useful for constructing 3D cadastral information included in buildings and features on the ground. As a result, the application of mobile mapping system for constructing 3D cadastral information will make a scientification and enhancing of the land information.

Study on the Integration of MMS and Airborn Survey Data for the Implementation of Precise Road Spatial Database (정밀도로공간정보 구축을 위한 지상 MMS 측정자료와 항공측량자료의 결합방법 연구)

  • Hwang, Jin Sang;Kim, Jae Koo;Yun, Hong Sik;Jung, Woon Chul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • Due to the introduction of various IT devices, including the recently smartphones and the widespread use of the car navigation system to the location-based information service space has been increased. Spatial information users have been requiring higher levels of quality. In this paper, we study how to build accurate three-dimensional space information by integrating MMS(Moblie Mapping System) survey and airborne survey data. Thus, to analyze the tendency of deviation between the MMS survey and airborne survey data observed in the experimental region, the deviation tendency of the data, it was confirmed that was not consistent. Deviation correction model to select how to change the georeferencing information directly contained in the GPS/INS processing results for the determination, classifies the standard is a method for acquiring the correction reference point coordinates using the calibration model, and analyzed their advantages and disadvantages. With the information of the reference point obtained by airborne photograph of a project, using the method of correcting the MMS survey data. Not only clear the deviation existing between the MMS survey data, it was possible to confirm that the deviation exists between the airborne survey data and MMS survey data was also almost erased.

Calibration of Laser scanning Mobile Mapping System using Lynx Mobile Mapper (Lynx Mobile Mapper를 이용한 레이저스캐너 기반 차량 MMS의 캘리브레이션)

  • Jeong, Tae-Jun;Yun, Hong-Sic;Hwang, Jin-Sang;Kim, Yong-Hyun;Lee, Ha-Jun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.207-208
    • /
    • 2010
  • In this paper, we carried out calibration of laser scanning MMS(Mobile Mapping System) using Lynx Mobile Mapper, a new MMS developed at Optech Incorporated. Laser scanning MMS could be defined as an integration of several subsystems. Subsystems are composed of laser scanner, gps receiver and antenna, INS(Inertial Navigation System), DMI(Distance Measurement Instrument). These are obtained 3D spatial information by direct-georeferencing technology. To obtain 3D spatial information, calibration of laser scanning MMS is required prior to operation system, it is similar to airborme lidar system. 145 checkpoints were used to accuracy estimation. The accuracy results are about 5cm(RMSE) for calibration in all directions(east, north, ellipsoidal height).

  • PDF

Low cost IMU/DGPS Integration using Wavelet (Wavelet 을 이용한 저가 IMU/GPS 통합)

  • 김성백;이승용;최지훈;최경호;장병태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.310-312
    • /
    • 2003
  • 관성항법 시스템은 항체의 위치, 속도 및 자세정보를 거의 연속적으로 제공할 수 있는 장점이 있다. 그러나 시간의 경과함에 따라 초기오차가 누적되어 발산하게 되는 단점이 있다. 이로 인하여 실제 적용시에는 매우 고가의 정밀한 자이로와 가속도계가 필요하다. 반면 DGPS는 오차의 누적이나 증가없이 장기간 동안 안정적으로 위치정보를 제공하지만 낮은 데이터 전송률과 도심지역과 칼은 곳에서는 신호의 차단이나 전파방해에 영향을 받는 단점이 있다. 이와 같이 상호보완적인 DGPS와 INS 정보를 통합하여 고 정밀의 속도, 위치 및 자세데이터를 제공할 수 있다. 본 논문은 저가의 IMU의 노이즈와 바이어스를 웨이브렛의 soft thresholding 기법을 이용하여 잡음을 제거하여 성능향상을 시도하였다. 통합알고리즘의 필터는 IS차로 구현하였으며 관측치는 DGPS의 위치정보를 이용하였다.

  • PDF

A Study on the Cycle-slip Detection for GPS Carrier-phase based Positioning of Land Vehicle (차량 환경에서 GPS 반송파 기반 위치 결정을 위한 반송파 불연속 측정치 검출에 대한 연구)

  • Kim, Youn-Sil;Song, Jun-Ssol;Yun, Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.593-599
    • /
    • 2013
  • In this paper, the GPS cycle-slip detection for carrier-phase based positioning of land vehicle is presented. For the carrier phase based positioning, cycle-slip detection is necessary to get the reliability of positioning result. There exists many cycle-slip detection algorithms, but we detect the cycle-slip by using the monitoring value which is defined as residual between the carrier phase measurement and estimated value from low-cost inertial sensor. To achieve goal of paper, low-cost cycle-slip detection system, permissible specification region of inertial sensor is derived. By using the result of permissible region, appropriate inertial sensor of cycle-slip detection can be decided, proper cost and proper specification. To verify the result of this paper, we conduct the rate table test. As a result, required cycle-slip detection performance is satisfied conservatively.

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.