• Title/Summary/Keyword: GPS/IMU

Search Result 189, Processing Time 0.023 seconds

Orbital Parameters Modeling of High Resolution Satellite Imagery for Mapping Applications (매핑을 위한 고해상 위성영상의 궤도요소 모델링)

  • 유환희;성재열;김동규;진경혁
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.405-414
    • /
    • 2000
  • A new generation of commercial satellites like IKONOS, SPOT-5 and OrbView-3,4 will have improved features, especially an higher geometric resolution with a better dynamic radiometric range. In addition high precision orbital position and attitude data will be provided by the on-board GPS receivers, IMU(Inertial Measurement Units) and star trackers. This additional information allows for reducing the number of ground control points. Furthermore this information enables direct georeferencing of imagery without ground control points. In our work mathematical models for calculating the satellite orbital parameters of SPOT-3 and KOMPSAT-1 were developed and can be easily extended to process images from other high resolution imaging systems as they become available.

  • PDF

Localization Performance Improvement for Mobile Robot using Multiple Sensors in Slope Road (경사도로에서 다중 센서를 이용한 이동로봇의 위치추정 성능 개선)

  • Kim, Ji-Yong;Lee, Ji-Hong;Byun, Jae-Min;Kim, Sung-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.67-75
    • /
    • 2010
  • This paper presents localization algorithm for mobile robot in outdoor environment. Outdoor environment includes the uncertainty on the ground. Magnetic sensor or IMU(Inertial Measurement Unit) has been used to estimate robot's heading angle. Two sensor is unavailable because mobile robot is electric car affected by magnetic field. Heading angle estimation algorithm for mobile robot is implemented using gyro sensor module consisting of 1-axis gyro sensors. Localization algorithm applied Extended Kalman filter that utilized GPS and encoder, gyro sensor module. Experiment results show that proposed localization algorithm improve considerably localization performance of mobile robots.

A Study for Utilization and constitution of MMSS (MMSS 시스템 구성 및 활용에 대한 연구)

  • Kim, Kwang-Yong;Yeun, Yeo-Sang;Choi, Jong-Hyun;Kim, Min-Soo;Kim, Kyoung-Ok
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.1 s.5
    • /
    • pp.117-126
    • /
    • 2001
  • We have developed the Mobile Multi Sensor System(MMSS) for the data construction of 4S application and for basic technology acquisition of mobile mapping system in Korea. Using this MMSS, we will collect the information of road and road facilities for DB creation and also construct the Digital Elevation Model(DEM) as ancillary data in urban area. The MMSS consist of the integrated navigation sensor, DGPS & IMU, and digital CCD camera set. In the S/W aspect, we developed the post-processing components for extracting the 3D coordinate information (Spatial Information) and the client program for the MMSS user group. In this paper, we will overview the MMSS constitution and post-processing program, and introduce the utilization plan of MMSS.

  • PDF

Design of Navigation System for Low Cost Unmanned Aerial Vehicle (저가형 무인항공기 운용을 위한 항법시스템 설계)

  • Lee, Jang-Ho;Kim, Sung-Pil;Park, Mu-Hyeok;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • This paper describes the design of navigation system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of navigation for low cost unmanned aerial vehicle, unmanned target drone as our test bed in this paper is verified by both Hardware in the loop simulation(HILS) to test performance of GPS as GPS output frequency high and results of flight test.

  • PDF

Autonomous Flight Experiment of a Foldable Quadcopter with Airdrop Launching Function (고공 비행개시가 가능한 접이식 쿼더콥터 자율비행 실험)

  • Lee, Cheonghwa;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.109-117
    • /
    • 2018
  • The experimental results are presented of an autonomous flight algorithm of a foldable quadcopter with airdrop launching functions. A foldable wing structure enabled the quadcopter to be inserted into a rocket container with limited space. The foldable quadcopter was then separated from the rocket in the air. The flight pattern was tracked using a global positioning system (GPS) with various sensors, including an inertial measurement unit (IMU) module until a designated target position was reached. Extensive field tests were conducted through an international rocket competition, ARLISS 2017, which was held in Black Rock Desert, Nevada, USA. The flight trajectory record of the experiments is stored in electrically erasable programmable read-only memory (EEPROM) embedded in the main control unit. The flight record confirmed that the quadcopter successfully separated from the rocket, executed flight toward the target for a certain length of time, and stably landed on the ground.

Accuracy Comparison of Direct Georeferencing and Indirect Georeferencing in the Mobile Mapping System

  • Bae Sang-Keun;Kim Byung-Guk;Sung Jung-Gon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.656-660
    • /
    • 2004
  • The Mobile Mapping System is an effective method to acquire the position and image data using vehicle equipped with the GPS (Global Positioning System), IMU (Inertial Measurement Unit), and CCD camera. It is used in various fields of road facility management, map update, and etc. In the general photogrammetry such as aerial photogrammetry, GCP (Ground Control Point)s are needed to compute the image exterior orientation elements (the position and attitude of camera). These points are measured by field survey at the time of data acquisition. But it costs much time and money. Moreover, it is not possible to make sufficient GCP as much as we want. However Mobile Mapping System is more efficient both in time and money because it can obtain the position and attitude of camera at the time of photographing. That is, Indirect Georeferencing must use GCP to compute the image exterior orientation elements, but on the other hand Direct Georeferencing can directly compute the image exterior orientation elements by GPS/INS. In this paper, we analyze about the positional accuracy comparison of ground point using the Direct Georeferencing and Indirect Georeferencing.

  • PDF

Real-time Location Tracking Analysis of Cross-country Skiing using Various Wearable Devices: A Case Study (다양한 웨어러블 디바이스를 활용한 크로스컨트리스키 실시간 위치 추적: 사례 연구)

  • Hwang, Jinny;Kim, Jinhae;Kim, Hyeyoung;Moon, Jeheon;Lee, Jusung;Kim, Jinhyeok
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Objective: The purpose of this study was to confirm that the cross-country ski sprint course in PyeongChang, where the 2018 Winter Olympics course was to utilize wearable devices equipped with inertial measurement unit (IMU), global positioning system (GPS) and heart rates sensor. Method: For the data collection, two national level cross-country (XC) skiers performed classic technique on the entire sprint course. We analyzed cycle characteristics, range of motion on double poling (DP) technique, average velocity, and displacement of 3 points according to the terrain. Results: The absolute cycle time gradually decreased during starting, middle and finish sections. While the length of the DP increased and the heart rates tended to increase for men skier. In addition, the results indicated that range of motion of knee joint during starting and finish section decreased more than middle section. The errors of latitude and longitude data collected through GPS were within 3 m from 3 points. Conclusion: Through the first case study in Korea, which analyzed the location and condition of XC skiers in the entire sprint course in real time, confirmed that feedback was available in the field using various wearable sensors.

Simulator Design Using a General Purpose PC and Off-The-Shelf Interface Boards for GNSS/INS Integrated Navigation System (GNSS/INS 통합항법 시스템을 위한 범용 PC와 Off-The-Shelf 인터페이스 보드를 이용한 시뮬레이터 설계)

  • Jae Hoon Son;Sang Heon Oh;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.93-102
    • /
    • 2024
  • Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) integrated navigation systems provide highly accurate and reliable navigation solutions and are widely used as civil and military navigation systems. In order to facilitate the GNSS/INS integrated navigation system development task, a simulator can be used to provide inputs for the GNSS/INS integrated navigation system. In this paper, a simulator design using general-purpose Personal Computer (PC) and Off-The-Shelf (OTS) interface boards for a GNSS/INS integrated navigation system is proposed and implementation results are presented. Requirements of the GNSS/INS integrated navigation system simulator are presented and a design method that satisfies the requirements is described. In order to show the usefulness of the proposed design method, a simulator using a general-purpose PC and OTS interface boards for the GPS/INS integrated navigation system are implemented and verified. The implementation results show that the simulator designed by the proposed method generates the GPS L1 C/A signal and IMU data without any problems.

A Study on the Cycle-slip Detection for GPS Carrier-phase based Positioning of Land Vehicle (차량 환경에서 GPS 반송파 기반 위치 결정을 위한 반송파 불연속 측정치 검출에 대한 연구)

  • Kim, Youn-Sil;Song, Jun-Ssol;Yun, Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.593-599
    • /
    • 2013
  • In this paper, the GPS cycle-slip detection for carrier-phase based positioning of land vehicle is presented. For the carrier phase based positioning, cycle-slip detection is necessary to get the reliability of positioning result. There exists many cycle-slip detection algorithms, but we detect the cycle-slip by using the monitoring value which is defined as residual between the carrier phase measurement and estimated value from low-cost inertial sensor. To achieve goal of paper, low-cost cycle-slip detection system, permissible specification region of inertial sensor is derived. By using the result of permissible region, appropriate inertial sensor of cycle-slip detection can be decided, proper cost and proper specification. To verify the result of this paper, we conduct the rate table test. As a result, required cycle-slip detection performance is satisfied conservatively.

Automatic Extraction of Kilometer Posts using a Mobile Mapping System (모바일매핑시스템을 이용한 거리표 자동 추출에 관한 연구)

  • Jeong, Jae-Seung;Jeong, Dong-Hoon;Kim, Byung-Guk;Sung, Jung-Gon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.318-323
    • /
    • 2007
  • 모바일매핑시스템은 차량에 CCD카메라, GPS IMU등의 장비를 탑재하고 도로 및 주변지역의 영상을 획득하여 지도제작 및 도로 도로시설물의 유지관리를 위한 시스템이다. 그러나 모바일매핑시스템의 자료는 자료의 양이 방대하여 지도제작 및 시설물 관리에 사용되기 위해서는 일차적인 가공이나 편집이 필요하다. 모바일매핑시스템은 대상물의 위치 및 영상정보를 획득할 수 있는 효율적인 시스템으로 도로 시설물의 유지 관리, 수치지도의 갱신 등 여러 분야에서 활용되고 있다. 이러한 모바일매핑시스템은 CCD 카메라 영상과 차량의 위치 및 자세정보를 제공하게 되고 이는 영상안의 객체에 대한 위치정보를 제공하는데 중요한 역할을 한다. 그러므로 본 연구에서는 모바일매핑시스템을 이용하여 영상내부에 나타난 거리표의 3차원 위치를 결정하고자 한다. 또 도로관리통합시스템의 핵심 키가 되는 거리표의 3차원 정보를 자동으로 추출함으로써 모바일매핑시스템의 방대한 정보를 효율적으로 처리하기 위한 방법을 알아볼 것이다.

  • PDF