Based on first-order shear deformation theory, a wave propagation model of graphene platelets reinforced metal foams (GPLRMFs) circular plates is built in this paper. The expressions of phase-/group- velocities and wave number are obtained by using Laplace integral transformation and Hankel integral transformation. The effects of GPLs pattern, foams distribution, GPLs weight fraction and foam coefficient on the phase and group velocity of GPLRMFs circular plates are discussed in detail. It can be inferred that GPLs distribution have great impacts on the wave propagation problems, and Porosity-I type distribution has the largest phase velocity and group velocity, followed by Porosity-III, and finally Porosity-II; With the increase of the GPLs weight fraction, the phase- and group- velocities for the GPLRMFs circular plate will be increased; With the increase of the foam coefficient, the phase- and group- velocities for the GPLRMFs circular plate will be decreased.
In the current paper, the nonlinear resonance response of functionally graded graphene platelet reinforced (FG-GPLRC) beams by considering different boundary conditions is investigated using the Euler-Bernoulli beam theory. Four different graphene platelets (GPLs) distributions including UD and FG-O, FG-X, and FG-A are considered and the effective material parameters are calculated by Halpin-Tsai model. The nonlinear vibration equations are derived by Euler-Lagrange principle. Then the perturbation method is used to discretize the motion equations, and the loadings and displacement are all expanded, so as to obtain the first to third order perturbation equations, and then the asymptotic solution of the equations can be obtained. Then the nonlinear amplitude-frequency response is obtained with the help of the modified Lindstedt-Poincare method (Chen and Cheung 1996). Finally, the influences of the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions on the resonance problems are comprehensively studied. Results show that the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions have a significant effect on the nonlinear resonance response of FG-GPLRC beams.
The main purpose of this research work is to investigate the critical buckling load of functionally graded (FG) porous plates with graphene platelets (GPLs) reinforcement using generalized differential quadrature (GDQ) method at thermal condition. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the plate thickness direction. Generally, the thermal distribution is considered to be nonlinear and the temperature changing continuously through the thickness of the nanocomposite plates according to the power-law distribution. To model closed cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme are used, through which mechanical properties of the structures can be extracted. Based on the third order shear deformation theory (TSDT) and the Hamilton's principle, the equations of motion are established and solved for various boundary conditions (B.Cs). The fast rate of convergence and accuracy of the method are investigated through the different solved examples and validity of the present study is evaluated by comparing its numerical results with those available in the literature. A special attention is drawn to the role of GPLs weight fraction, GPLs patterns through the thickness, porosity coefficient and distribution of porosity on critical buckling load. Results reveal that the importance of thermal condition on of the critical load of FGP-GPL reinforced nanocomposite plates.
This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.
In this research, the buckling analysis of sandwich beam with composite reinforced by graphene platelets (GPLs) in two face sheets is investigated. Three type various porosity patterns including uniform, symmetric and asymmetric are considered through the thickness direction of the core. Also, the top and bottom face sheets layers are considered composite reinforced by GPLs/CNTs based on Halpin-Tsai micromechanics model and extended mixture rule, respectively. Based on various shear deformation theories such as Euler-Bernoulli, Timoshenko and Reddy beam theories, the governing equations of equilibrium using minimum total potential energy are obtained. It is seen that the critical buckling load decreases with an increase in the porous coefficient, because the stiffness of sandwich beam reduces. Also, it is shown that the critical buckling load for asymmetric distribution is lower than the other cases. It can see that the effect of graphene platelets on the critical buckling load is higher than carbon nanotubes. Moreover, it is seen that the difference between carbon nanotubes and graphene platelets for Reddy and Euler-Bernoulli beam theories is most and least, respectively.
Mohammad Sadegh Tayebi;Sattar Jedari Salami;Majid Tavakolian
Structural Engineering and Mechanics
/
제85권4호
/
pp.445-459
/
2023
The current investigation is the first endeavor to apply the full layerwise finite element method (FEM) in free vibration analysis of functionally graded (FG) composite plates reinforced with graphene nanoplatelets (GPLs) in thermal environment. Unlike the equivalent single-layer (ESL) theories, the layerwise FEM focuses on all three-dimensional (3D) effects. The GPLs weight fraction is presumed invariable in each layer but varies through the plate thickness in a layerwise model. The modified Halpin-Tsai model is employed to acquire the effective Young's modulus. The rule of mixtures is applied to specify the effective Poisson's ratio and mass density. First, the current method is validated by comparing the numerical results with those stated in the available works. Next, a thorough numerical study is performed to examine the influence of various factors involving the pattern of distribution, weight fraction, geometry, and size of GPLs, together with the thickness-to-span ratio, thermal environment, and boundary conditions of the plate, on its free vibration behaviors. Numerical results demonstrate that employing a small percentage of GPL as reinforcement considerably grows the natural frequencies of the pure epoxy. Also, distributing more square-shaped GPLs, involving a smaller amount of graphene layers, and vicinity to the upper and lower surfaces make it the most efficient method to enhance the free vibration behaviors of the plate.
Mohammad Mashhour;Mohammad Reza Barati;Hossein Shahverdi
Steel and Composite Structures
/
제46권5호
/
pp.611-619
/
2023
In the present work, the flutter characteristics of porous nanocomposite cylindrical shells, reinforced with graphene platelets (GPLs) in supersonic airflow, have been investigated. Different distributions for GPLs and porosities have been considered which are named uniform and non-uniform distributions thorough the shell's thickness. The effective material properties have been determined via Halpin-Tsai micromechanical model. The cylindrical shell formulation considering supersonic airflow has been developed in the context of first-order shell and first-order piston theories. The governing equations have been solved using Galerkin's method to find the frequency-pressure plots. It will be seen that the flutter points of the shell are dependent on the both amount and distribution of porosities and GPLs and also shell geometrical parameters.
The nonlocal strain gradient theory for the static bending analysis of graphene nanoplatelets (GPLs) reinforced the nanoplate is developed in this paper. The nanoplatelet is exposed to thermo-mechanical loads and is also supposed to stand on an elastic foundation. For computing impressive composite material characteristics, the Halpin-Tsai model is selected for various sectors. The various distributions are propounded including UD, FG-O, and FG-X. The represented equations are acquired based on the virtual work and sinusoidal shear and normal deformation theory (SSNDT). Navier's solution as the analytical method is applied to solve these equations. Furthermore, the effects of GPL weight fraction, temperature parameters, distribution pattern and parameters of the foundation are presented and discussed.
In the present work, thermal buckling and post-buckling behaviors of imperfect graphene platelet reinforced metal foams (GPRMFs) doubly curved shells are examined. Material properties of GPRMFs doubly curved shells are presumed to be the function of the thickness. Reddy' shell theory incorporating geometric nonlinearity is utilized to derive the governing equations. Various types of the graphene platelets (GPLs) distribution patterns and doubly curved shell types are taken into account. The nonlinear equations are discretized for the case of simply supported boundary conditions. The thermal post-buckling response are presented to analyze the effects of GPLs distribution patterns, initial geometric imperfection, GPLs weight fraction, porosity coefficient, porosity distribution forms, doubly curved shell types. The results show that these factors have significant effects on the thermal post-buckling problems.
The research presented in this paper deals with dynamic stability analysis of the graphene nanoplatelets (GPLs) reinforced composite spinning disk. The presented small-scaled structure is simulated as a disk covered by viscoelastic substrate which is two-parametric. The centrifugal and Coriolis impacts due to the spinning are taken into account. The stresses and strains would be obtained using the first-order-shear-deformable-theory (FSDT). For Poisson ratio, as well as various amounts of mass densities, the mixture rule is employed, while a modified Halpin-Tsai model is inserted for achieving the elasticity module. The structure's boundary conditions (BCs) are obtained employing GPLs reinforced composite (GPLRC) spinning disk's governing equations applying principle of Hamilton which is based on minimum energy and ultimately have been solved employing numerical approach called generalized-differential quadrature-method (GDQM). Spinning disk's dynamic properties with different boundary conditions (BCs) are explained due to the curves drawn by Matlab software. Also, the simply-supported boundary conditions is applied to edges 𝜃=𝜋/2, and 𝜃=3𝜋/2, while, cantilever, respectively, is analyzed in R=Ri, and R0. The final results reveal that the GPLs' weight fraction, viscoelastic substrate, various GPLs' pattern, and rotational velocity have a dramatic influence on the amplitude, and vibration behavior of a GPLRC rotating cantilevered disk. As an applicable result in related industries, the spinning velocity impact on the frequency is more effective in the higher radius ratio's amounts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.