• Title/Summary/Keyword: GPIR system

Search Result 2, Processing Time 0.013 seconds

A Study on Development of the GPIR system Receiver Using G-Files (G-File을 이용한 GPIR 시스템 수신기 개발)

  • Choi, Sang-Kyoon;Kim, Jae-Saeng
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.336-342
    • /
    • 2010
  • GPIR(GPS Position Information Revision) system is a new concept of GPS system which utilizes database containing the location of taking a picture by the existing GPS, an angle between a camera and a subject and the location information of buildings and minimizes the GPS's own margin of error and there by provides the services, such as location-guiding via GPS and way-guiding via navigation in an exact and precision way more than before. GPIR system comprehends the location of taking photos via GPS information saved in G-files, searches database in the direction of taking a photo at a photo-taking position via location information and the photo-taking directional angle. And GPIR system corrects the GPS information searched to the location of a subject, again saves such information in a G-file and is ready for receiving more detailed location of the subject. This study explores into the design and development of a receiver which a GPIR user is able to utilize its system as well as the design of the receiver's prototypes.

Optimization Design in Time Domain on Impulse GPIR System (임펄스 GPIR시스템의 시간영역 최적화 설계)

  • Kim, Kwan-Ho;Park, Young-Jin;Yoon, Young-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • In this paper, system optimization design technique of an impulse ground penetrating image radar (GPIR) in time domain is proposed to improve depth resolution of the system. For the purpose, time domain analysis method of key components such as impulse generator and UWB antenna is explained and by simulation, parameters of each component are determined. In particular, by standardizing the impulse signal, spectrum efficiency of a radiated impulse signal is improved and a U-shaped planar dipole antenna for a UWB antenna is developed. By equipping a parabolic metal reflector with the proposed antenna, external noise is prevented and the ability of radiating an input impulse into ground is improved. In addition, to remove ringing effect of the propose antenna which causes serious degradation of the system performance, resistors are loaded at the edge of the antenna and then Tx and Rx UWB antennas are optimized by simulation in time domain. For images of targets buried under the ground migration technique is applied and influence of tough ground surface on distortion of received impulse signals is reduced using technique of noise and signal distortion reduction in time domain and its time resolution is enhanced. To verify the design optimization procedure, a prototype of an GPIR and an artificial test field are made. Measurement results show that the resolution of the system designed is as good as that of a theoretical model.