• 제목/요약/키워드: GPGPU(General-Purpose computation on the GPU)

검색결과 13건 처리시간 0.021초

IPC-based Dynamic SM management on GPGPU for Executing AES Algorithm

  • Son, Dong Oh;Choi, Hong Jun;Kim, Cheol Hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.11-19
    • /
    • 2020
  • 최신 GPU는 GPGPU를 활용하여 범용 연산이 가능하다. 뿐만 아니라, GPU는 내장된 다수의 코어를 활용하여 강력한 연산 처리량을 제공한다. AES 알고리즘은 다수의 병렬 연산을 요구하지만 CPU 구조에서는 효율적인 병렬처리가 이뤄지지 않는다. 따라서, 본 논문에서는 강력한 병력 연산 자원을 활용하는 GPGPU 구조에서 AES 알고리즘을 수행함으로써 AES 알고리즘 처리시간을 줄여보았다. 하지만, GPGPU 구조는 AES 알고리즘 같은 암호알고리즘에 최적화되어 있지 않다. 그러므로 AES 알고리즘에 최적화될 수 있도록 재구성 가능한 GPGPU 구조를 제안하고자 한다. 제안된 기법은 SM의 개수를 동적으로 할당하는 IPC 기반 SM 동적 관리 기법이다. IPC 기반 SM 동적 관리 기법은 GPGPU 구조에서 동작하는 AES의 IPC를 실시간으로 반영하여 최적의 SM의 개수를 동적으로 할당한다. 실험 결과에 따르면 제안된 동적 SM 관리 기법은 기존의 GPGPU 구조와 비교하여 하드웨어 자원을 효과적으로 활용하여 성능을 크게 향상시켰다. 일반적인 GPGP 구조와 비교하여, 제안된 기법의 AES의 암호화/복호화는 평균 41.2%의 성능 향상을 보여준다.

작업 처리 단위 변화에 따른 GPU 성능과 메모리 접근 시간의 관계 분석 (Analysis of GPU Performance and Memory Efficiency according to Task Processing Units)

  • 손동오;심규연;김철홍
    • 스마트미디어저널
    • /
    • 제4권4호
    • /
    • pp.56-63
    • /
    • 2015
  • 최신 GPU는 프로세서 내부에 포함된 다수의 코어를 활용하여 높은 병렬처리가 가능하다. GPU의 높은 병렬성을 활용하는 기법 중 하나인 GPGPU 구조는 GPU에서 대부분의 CPU의 작업을 처리가 가능하게 해주며, GPU의 높은 병렬성과 하드웨어자원을 효과적으로 활용할 수 있다. 본 논문에서는 다양한 벤치마크 프로그램을 활용하여 CTA(Cooperative Thread Array) 할당 개수 변화에 따른 메모리 효율성과 성능을 분석하고자 한다. 실험결과, CTA 할당 개수 증가에 따라 다수의 벤치마크 프로그램에서 성능이 향상되었지만, 일부 벤치마크 프로그램에서는 CTA 할당 개수 증가에 따른 성능 향상이 발생하지 않았다. 이러한 이유로는 벤치마크 프로그램에서 생성된 CTA 개수가 적거나 동시에 수행할 수 있는 CTA 개수가 정해져 있기 때문으로 판단된다. 또한, 각 벤치마크 프로그램별로 메모리 채널 정체에 따른 메모리 스톨, 내부연결망 정체에 따른 메모리 스톨, 파이프라인의 메모리 단계에서 발생하는 스톨을 분석하여 성능과의 연관성을 파악하였다. 본 연구의 분석결과는 GPGPU 구조의 병렬성 및 메모리 효율성 향상을 위한 연구에 대한 정보로 활용될 것으로 기대된다.

GPGPU 기반 Convolutional Neural Network의 효율적인 스레드 할당 기법 (Efficient Thread Allocation Method of Convolutional Neural Network based on GPGPU)

  • 김민철;이광엽
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권10호
    • /
    • pp.935-943
    • /
    • 2017
  • 많은 양의 데이터 기반으로 학습하는 neural network 중 이미지 분류나 음성 인식 등에 사용되어 지고 있는 CNN(Convolution neural network)는 현재까지도 우수한 성능을 가진 구조로 계속적으로 발전되고 있다. 제한된 자원을 가진 임베디드 시스템에서 활용하기에는 많은 어려움이 있다. 그래서 미리 학습된 가중치를 사용하지만 여전히 한계점이 있기 때문에 이를 해결하기 위해 GPU의 범용 연산을 위해서 사용하는 GP-GPU(General-Purpose computing on Graphics Processing Units)를 활용하는 추세다. CNN은 단순하고 반복적인 연산을 수행하기 때문에 SIMT(Single Instruction Multiple Thread)기반의 GPGPU에서 스레드 할당과 활용 방법에 따라 연산 속도가 많이 달라진다. 스레드로 Convolution 연산과 Pooling 연산을 수행할 때 쉬어야 하는 스레드가 발생하는 데 이러한 문제를 해결하기 위해 남은 스레드가 다음 피쳐맵과 커널 계산에 활용되는 방법을 사용함으로써 연산 속도를 증가시켰다.

GPGPU를 이용한 가우시안 혼합 모델의 관측확률 계산 성능 향상 (Performance Improvement in Observation Probability Computation of Gaussian Mixture Models Using GPGPU)

  • 김형주;김승희;김상훈;장길진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.148-151
    • /
    • 2012
  • 범용 GPU (general-purpose computing on graphics processing units, GPGPU)는 GPU를 일반적인 목적으로 사용하고자 하는 병렬 컴퓨터 구조로써, 과학 연산 등 여러 분야에서 응용 프로그램의 성능을 향상시키기 위하여 사용되고 있다. 본 연구에서는 음성인식기에서 주로 사용되는 가우시안 혼합 모델(Gaussian mixture model, GMM)에서 많은 연산시간을 차지하는 관측확률 계산의 성능을 향상시키고자 GPGPU를 이용하는 알고리즘을 구현하였으며, 기존 CPU 기반 알고리즘 대비 약 13배 연산시간을 단축하였다.

OpenCL을 활용한 이기종 파이프라인 컴퓨팅 기반 Spark 프레임워크 (Spark Framework Based on a Heterogenous Pipeline Computing with OpenCL)

  • 김대희;박능수
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.270-276
    • /
    • 2018
  • Apache Spark is one of the high performance in-memory computing frameworks for big-data processing. Recently, to improve the performance, general-purpose computing on graphics processing unit(GPGPU) is adapted to Apache Spark framework. Previous Spark-GPGPU frameworks focus on overcoming the difficulty of an implementation resulting from the difference between the computation environment of GPGPU and Spark framework. In this paper, we propose a Spark framework based on a heterogenous pipeline computing with OpenCL to further improve the performance. The proposed framework overlaps the Java-to-Native memory copies of CPU with CPU-GPU communications(DMA) and GPU kernel computations to hide the CPU idle time. Also, CPU-GPU communication buffers are implemented with switching dual buffers, which reduce the mapped memory region resulting in decreasing memory mapping overhead. Experimental results showed that the proposed Spark framework based on a heterogenous pipeline computing with OpenCL had up to 2.13 times faster than the previous Spark framework using OpenCL.

다중 프로세스 서비스를 이용한 GPU 응용 동시 실행 성능 분석 (A Execution Performance Analysis of Applications using Multi-Process Service over GPU)

  • 김세진;오지선;김윤희
    • KNOM Review
    • /
    • 제22권1호
    • /
    • pp.60-67
    • /
    • 2019
  • Graphical Processing Units(GPUs)는 비교적 정형화된 연산을 병렬적으로 처리함으로써 높은 성능을 제공한다. 기술의 발전에 따라 GPU 환경에서 다양한 응용 실행을 시도하는 General Purpose GPU(GPGPU) 실행환경이 연구되고 있으나, 자원 분배, 스케줄링 등의 GPU 자원을 효율적으로 사용하기에는 아직 제한적이다. 최신의 GPU 구조들은 커널의 동시 실행을 지원하지만 같은 응용 안에서만 동시 실행이 가능하다는 문제점이 있어 NVIDIA는 Multi-Process Service(MPS)를 제안하였다. MPS는 다른 응용에 속한 커널도 동시 실행할 수 있도록 서비스한다. 하지만 응용의 실행 특성 및 동시 실행되는 패턴이 미리 파악되어 있지 않으면 MPS 장점을 최대한으로 취할 수 없다. 본 논문에서는 응용 프로파일링을 통해 응용의 특성을 파악하고, 동시 실행 스케줄링 알고리즘을 적용하여 실험을 진행하였다. MPS의 장점을 최대한으로 활용하기 위해서는 함께 돌릴 응용의 특성을 파악하고, 프로파일링을 통해 동시 실행하는 응용들의 순서를 제어하는 스케줄링 알고리즘이 중요함을 보인다.

OpenCL 및 Embedded GPU를 이용한 영상 특징 추출 및 파노라마 영상 생성의 병렬화 (Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU)

  • 강승헌;이승재;이만희;박인규
    • 방송공학회논문지
    • /
    • 제19권3호
    • /
    • pp.316-328
    • /
    • 2014
  • 본 논문에서는 최신 embedded GPU를 사용하여 영상의 특징 추출 알고리즘(SIFT, SURF)을 병렬화하고, 특징 추출 및 정합 결과를 이용하여 파노라마 영상을 GPU에서 고속으로 생성하는 방법을 제안한다. 병렬화 된 알고리즘의 GPGPU(general purpose computation on GPU) 구현은 최신 스마트폰의 embedded GPU에서 지원하기 시작한 OpenCL을 이용하였다. 본 논문에서는 GPU에서 OpenGL Shading Language(GLSL)를 이용한 기존의 병렬화와 OpenCL을 이용한 새로운 병렬화 구현 결과를 효과적인 코드 구현 방법과 수행속도 관점에서 비교하였다. 실험결과, OpenCL은 GLSL과 유사한 수행 속도를 보였으며 embedded CPU와 비교하여 약 3~4배 빠른 수행속도를 보였다. 구현한 특징 추출 결과의 응용 사례로써, 특징 정합을 통한 영상 정합을 GPU상에서 병렬 수행하여 여러 장의 영상으로부터 파노라마 영상을 고속으로 생성하는 사례를 보인다.

GPGPU의 멀티 쓰레드를 활용한 고성능 병렬 LU 분해 프로그램의 구현 (Implementation of high performance parallel LU factorization program for multi-threads on GPGPUs)

  • 신봉희;김영태
    • 인터넷정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.131-137
    • /
    • 2011
  • GPGPU는 원래 그래픽 계산을 위한 프로세서인 GPU를 일반 계산에 활용하여 저전력으로 고성능의 효율을 보이는 신개념의 계산 장치이다. 본 논문에서는 GPGPU에서 계산을 하기 위한 병렬 LU 분해법의 알고리즘을 제안하였다. Nvidia GPGPU에서 프로그램을 실행하기 위한 CUDA 계산 환경에서는 계산하고자 하는 데이터 도메인을 블록으로 나누고 각 블록을 쓰레드들이 동시에 계산을 하는데, 이 때 블록들의 계산 순서는 무작위로 진행이 되기 때문에 블록간의 데이터 의존성을 가지는 LU 분해 프로그램에서는 결과가 정확하지 않게 된다. 본 논문에서는 병렬 LU 분해법에서 블록간의 계산 순서를 인위적으로 정하는 구현 방식을 제안하며 아울러 LU 분해법의 부분 피벗팅을 계산하기 위한 병렬 reduction 알고리즘도 제안한다. 또한 구현된 병렬프로그램의 성능 분석을 통하여 GPGPU의 멀티 쓰레드 기반으로 고성능으로 계산할 수 있는 병렬프로그램의 효율성을 보인다.

Algorithmic GPGPU Memory Optimization

  • Jang, Byunghyun;Choi, Minsu;Kim, Kyung Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권4호
    • /
    • pp.391-406
    • /
    • 2014
  • The performance of General-Purpose computation on Graphics Processing Units (GPGPU) is heavily dependent on the memory access behavior. This sensitivity is due to a combination of the underlying Massively Parallel Processing (MPP) execution model present on GPUs and the lack of architectural support to handle irregular memory access patterns. Application performance can be significantly improved by applying memory-access-pattern-aware optimizations that can exploit knowledge of the characteristics of each access pattern. In this paper, we present an algorithmic methodology to semi-automatically find the best mapping of memory accesses present in serial loop nest to underlying data-parallel architectures based on a comprehensive static memory access pattern analysis. To that end we present a simple, yet powerful, mathematical model that captures all memory access pattern information present in serial data-parallel loop nests. We then show how this model is used in practice to select the most appropriate memory space for data and to search for an appropriate thread mapping and work group size from a large design space. To evaluate the effectiveness of our methodology, we report on execution speedup using selected benchmark kernels that cover a wide range of memory access patterns commonly found in GPGPU workloads. Our experimental results are reported using the industry standard heterogeneous programming language, OpenCL, targeting the NVIDIA GT200 architecture.

An Efficient Block Cipher Implementation on Many-Core Graphics Processing Units

  • Lee, Sang-Pil;Kim, Deok-Ho;Yi, Jae-Young;Ro, Won-Woo
    • Journal of Information Processing Systems
    • /
    • 제8권1호
    • /
    • pp.159-174
    • /
    • 2012
  • This paper presents a study on a high-performance design for a block cipher algorithm implemented on modern many-core graphics processing units (GPUs). The recent emergence of VLSI technology makes it feasible to fabricate multiple processing cores on a single chip and enables general-purpose computation on a GPU (GPGPU). The GPU strategy offers significant performance improvements for all-purpose computation and can be used to support a broad variety of applications, including cryptography. We have proposed an efficient implementation of the encryption/decryption operations of a block cipher algorithm, SEED, on off-the-shelf NVIDIA many-core graphics processors. In a thorough experiment, we achieved high performance that is capable of supporting a high network speed of up to 9.5 Gbps on an NVIDIA GTX285 system (which has 240 processing cores). Our implementation provides up to 4.75 times higher performance in terms of encoding and decoding throughput as compared to the Intel 8-core system.