• 제목/요약/키워드: GPD 분포

검색결과 24건 처리시간 0.025초

로그-정규분포와 파레토 합성 분포의 임계점 추정 (Threshold estimation for the composite lognormal-GPD models)

  • 김보배;노지숙;백창룡
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.807-822
    • /
    • 2016
  • LN-GPD 합성 분포는 몸통부분은 로그-정규분포를 두터운 꼬리에 대해서는 GPD분포를 따르도록 합성한 분포로 두터운 몸통과 꼬리를 동시에 가지는 자료를 절삭없이 효율적으로 다룰 수 있는 분포이다. 하지만 임계점을 포함하고 있기에 최대우도추정량은 매우 불안정함이 잘 알려져 있어 본 논문이서는 이를 극복하기 위해서 임계점을 먼저 추정하고 나머지 모수들에 대해서 따로 추정하는 2단계 추정 방법들에 대해서 살펴보고 그 성능을 비교해 보았다. 그 결과 동시 추정하는 최대우도추정량의 경우 불안정한 추정이 GPD 분포의 꼬리 지수에서 두드러 졌으며 임계점에 대해서는 비교적 잘 추정함을 알 수 있었다. 이와 반대로 여러 비모수적인 방법들은 꼬리 지수는 만족스럽게 잘 추정하였으나 임계점의 경우 편의가 있음을 관찰할 수 있었다. 실증자료 분석을 위해 2단계 추정법을 이스라엘 은행의 콜센터에서 수집한 서비스 시간에 대한 자료에 적합해 보았으며 그 결과 LN-GPD 합성 분포를 사용하는 것이 로그-정규분포 혹은 GPD 분포 단독으로 사용하는 것보다 자료의 손실도 없이 더 좋은 적합도를 보임을 알 수 있었다.

시간에 따라 변화하는 로그-정규분포와 파레토 합성 분포의 모형 추정 (Time-varying modeling of the composite LN-GPD)

  • 박소진;백창룡
    • 응용통계연구
    • /
    • 제31권1호
    • /
    • pp.109-122
    • /
    • 2018
  • 임계값을 기준으로 그 보다 작은 값은 로그정규분포(lognormal distribution; LN)를, 큰 값은 일반화파레토분포(generalized Pareto distribution; GPD)를 따르는 합성 분포를 LN-GPD 합성분포라 한다. Scollnik (2007)은 LN-GPD 합성분포가 로그정규분포와 GPD를 합성 시킴으로써 자료의 손실 없이 꼬리가 두꺼운 분포에서 좋은 적합력을 가진다고 밝혔다. 본 논문에서는 시간에 따라 변하는 LN-GPD 평균모형을 다루었으며 방법론으로는 국소 다항최대우도법을 기반으로 추정하는 방법에 대해서 연구하였다. 시간에 따라 변하는 분포를 추정함으로써 자료에 대한 훨씬 자세한 이해가 가능하며 이는 곧 상담원 배치나 자원배분과 같은 운영관리에 큰 도움을 줄 수 있다. 본 연구는 GPD 분포만을 고려한 Beirlant와 Goegebeur (2004)를 확장하여 절삭한 로그정규분포를 추가하여 자료의 손실 없이 자료의 특징을 살펴볼 수 있다는데도 의의가 있다. 모의실험을 통해 제안한 방법론의 적절함을 살펴 보았고 실증 자료 분석으로 이스라엘 은행의 콜센터 서비스 시간에 대해 분석하여 상담원 배치와 관련된 흥미로운 결과를 찾을 수 있었다.

재무비율의 극단치에 대한 통계적 분석 (Statistical Analysis of Extreme Values of Financial Ratios)

  • 주지환
    • 지식경영연구
    • /
    • 제22권2호
    • /
    • pp.247-268
    • /
    • 2021
  • 투자자들은 기업가치를 평가하기 위하여 재무비율을 활용하는데 특히 PER과 PBR은 적정 기업가치를 판단하는데 중요한 역할을 하는 대표적인 수치로 알려져 있다. 금융자료는 꼬리가 매우 두터운 형태의 분포를 따르는 경우가 많은데, PER과 PBR은 첨도가 매우 높으며 해당 재무비율의 극단치들은 기업의 다양한 이해관계자들의 의사결정 시 중요한 역할을 한다. 본 논문에서는 통계학의 극단치이론에서 주로 활용되는 GPD와 최근 새롭게 제안된 분포인 exGPD를 도입하고, 두 분포 간의 성능을 비교하기 위해 시뮬레이션을 수행하여 적합도를 살펴본 후 우측 꼬리에 속하는 90, 95, 99% 퍼센타일 값을 추정하여 실제 값과 비교한다. 다음으로 국내 증권시장에 상장된 정보기술군(IT) 기업들의 PER, PBR 자료에 근거하여 실증분석을 수행한다. 분석 결과 특히 PBR에서 exGPD가 GPD에 비해 자료의 우측 꼬리 영역을 보다 효과적으로 설명함을 확인하였다. 따라서, 재무비율에 기반한 기업가치평가 또는 위험관리 시 극단치의 특성을 효과적으로 반영할 수 있는 exGPD와 같은 분포를 활용한다면 꼬리 영역에 담긴 정보를 보다 정확하게 파악할 수 있다. 이는 기업 내부 위험관리자의 효과적인 지식경영을 돕고, 투자자를 비롯하여 다양한 외부 이해관계자들에게 유용한 지식을 제공할 수 있다.

GPD 기반의 유전자 알고리즘을 이용한 포트폴리오 최적화 (Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution)

  • 김현돈;김현태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1479-1494
    • /
    • 2015
  • 최적의 포트폴리오를 선택하기 위한 연구는 평균-분산모형을 시작으로 다양하게 진행되어 왔다. 과거에는 위험자산의 확률분포가 정규분포를 따른다고 가정하여, 투자자가 보유한 위험자산의 분산이 최소화되고 기대수익률이 최대가 되도록 포트폴리오를 구성하도록 하였다. 그러나 실제 위험자산의 분포에는 극단적인 사건들이 많이 발생하기 때문에 정규분포보다 훨씬 꼬리부분이 두꺼우며, 또한 왼쪽꼬리와 오른쪽꼬리가 대칭적이지도 않은 것으로 밝혀졌다. 이에 본 논문에서는 위험자산의 확률분포를 극단치 이론에서 널리 사용되는 일반화 파레토분포 (GPD)로 모형화하였고 체계적인 위험의 추정을 위하여 VaR를 이용하는 한편, 최적의 포트폴리오의 탐색을 위해서는 유전자 알고리즘을 사용하였다. 제안 방법의 적정성을 확인하기 위해 국내 증시에서 최적 포트폴리오를 탐색해 보았으며, 그 결과 GPD로 투자자산의 위험을 추정하였을 때 가장 좋은 결과를 얻을 수 있었다.

코스피 지수 자료의 베이지안 극단값 분석 (A Bayesian Extreme Value Analysis of KOSPI Data)

  • 윤석훈
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.833-845
    • /
    • 2011
  • 본 논문에서는 1998.01.03부터 2011.08.31까지 수집된 코스피 지수 자료로부터 계산된 일별 로그수익률과 일별 로그손실률에 대한 극단값 통계분석을 수행하였다. 사용된 극단값 통계분석 모형은 포아송-GPD 모형이고 모수의 추정과 극단분위수의 추정은 최대가능도 방법을 적용하였다. 본 논문에서는 또한 포아송-GPD 모형에 추가적으로 모수의 무정보사전분포를 가정한 베이지안 방법을 고려하였다. 여기서는 마르코프 연쇄 몬테칼로 방법을 적용하여 모수와 극단분위수를 추정하였다. 분석 결과 최대가능도 방법과 베이지안 방법에서 모두, 로그수익률 분포의 오른쪽 꼬리는 정규분포보다 짧은 반면, 로그손실률 분포의 오른쪽 꼬리는 정규분포보다 두텁다는 결론이 얻어졌다. 극단값 분석에서 베이지안 방법을 사용할 때의 장점은 정칙조건이 만족되지 않는 경우에도 최대가능도추정량의 전통적 점근 성질을 걱정할 필요가 없고 예측의 경우에는 모수의 불확실성과 미래 관측치의 불확실성이 모두 반영되는 효과가 있다는 것이다.

'0-과잉 모형'을 이용한 집중호우의 발생특성 분석 (Analysis of torrential rainfall characteristics using 'zero-inflated models')

  • 김상욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.453-453
    • /
    • 2017
  • 본 연구에서는 최근 기후변화로 인한 집중호우의 발생횟수의 경향을 확률적으로 분석함에 있어 1개월 동안 80 mm/day 이상의 강우사상을 집중호우로 정의하여, 대구 및 부산 강우관측소로부터 수집된 384개월 동안의 집중호우를 분석하였다. 집중호우 월별 발생횟수와 같은 형식의 자료의 확률적 분석은 대개 Poisson 분포 (POI)가 사용되나 자료에 포함된 0자료의 과잉은 확률분포를 왜곡시키는 문제를 발생시킨다. 본 연구에서는 이 문제를 개선하기 위하여 개발된 일반화 Poisson 확률분포 (GPD), 0-과잉 Poisson 확률분포 (ZIP), 0-과잉 일반화 Poisson 확률분포 (ZIGP), Bayesian 0-과잉 일반화 Poisson 확률분포 (Bayesian ZIGP)를 집중호우 자료에 적용하고, 5개 모형의 특성을 비교분석하였으며, Bayesian ZIGP 모형의 구축에 있어서는 정보적 사전분포를 사용함으로써 모형의 정확도를 개선하였다. 분석결과 분석하고자 하는 자료에 0이 과다하게 포함되어 있는 경우 POI 및 GPD 분포는 관측결과와는 다른 결과를 제시하여 적절한 모형으로 고려되지 못함을 알 수 있었다. 5가지 모형 중 정보적 사전분포를 탑재한 Bayesian ZIGP 모형이 가장 관측 자료와 유사한 결과를 도출하였으나 모형의 구축에 수반되는 실용적인 측면을 고려하면 ZIP 모형도 충분히 사용될 수 있는 모형으로 추천되었다.

  • PDF

GPD 모형 및 선형회귀분석을 이용한 산악형 강수 해석 (Orographic Precipitation Analysis with GPD Model and Linear Regression)

  • 엄명진;윤혜선;조원철;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1053-1057
    • /
    • 2008
  • 본 연구에서는 산악형 강수 해석을 위해 제주도내 강우관측 자료를 이용하여 확률강우량 산정 및 고도와의 선형회귀분석을 수행하였다. 제주도내 강우관측 자료는 기상관서 4개소 및 AWS(Automatic Weather System, 자동기상관측소) 13개소의 자료를 활용하였다. 확률강우량 산정시 AWS 강우관측 자료는 AMS(Annual Maximum Series, 연 최대치 계열) 모형을 적용하기에는 자료기간이 충분하지 않으므로 짧은 자료기간에 적합한 PDS(Partial Duration Series, 부분 기간치 계열) 모형을 적용하였다. 따라서 본 연구에서는 PDS의 대표적인 분포형인 GPD(Generalized Pareto Distribution)를 적용하여 지속시간별 확률강우량을 산정하였다. 산정된 지속시간별 확률강우량과 고도와의 관계를 확인하기 위하여 선형회귀분석을 수행하였다. 회귀분석 결과 확률강우량은 고도가 증가함에 따라 선형적으로 증가하였다. 또한, 재현기간이 길어질수록 고도에 따른 확률강우량 증가율도 증가하였다. 다만, 재현기간과 관계없이 지속시간이 짧을 경우 확률강우량과 고도와의 선형 관계는 약해지는 것으로 나타났다.

  • PDF

한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석 (A Bayesian Analysis of Return Level for Extreme Precipitation in Korea)

  • 이정진;김남희;권혜지;김용구
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.947-958
    • /
    • 2014
  • 집중호우의 특성을 이해하는 것은 수문관리 및 재해방재 등에서 매우 중요하다. 특히 반환주기는 이러한 집중호우의 특성을 나타내는 측정치로 자주 사용된다. 본 논문에서는 베이지안 계층적 모형을 이용하여 강우의 반환주기에 대한 공간구조를 분석하였다. 먼저 국내 62개 지점에서 측정한 강우 강도을 기초로 하여 연간 일일 최대강우량과 특정한 수준을 초과하는 강우량에 대해서 generalized extreme value(GEV)와 generalized Pareto distribution(GPD)를 각각 가정하여 추정하였다. 집중호우 반환주기에 대한 공간구조는 이 GEV 분포와 GPD 분포의 모수에 공간구조를 가지는 다변량 정규분포를 이용하여 설명하였다. 제안된 모형을 국내 76개 지역에서 39년간 측정된 일별 강우량 관측자료에 적용하였다.

국제현물원유가의 일일 상승 및 하락율의 극단값 분석 (Analysis of Extreme Values of Daily Percentage Increases and Decreases in Crude Oil Spot Prices)

  • 윤석훈
    • 응용통계연구
    • /
    • 제23권5호
    • /
    • pp.835-844
    • /
    • 2010
  • 극단값 통계 분석의 도구로는 전통적인 연간 최대값 방법과 현대적인 분계점 방법, 그리고 분계점 방법을 개선한 변형체 등으로 분류할 수 있다. 연간 최대값 방법은 시계열자료의 연간 최대값들에 대하여 일반화극단값분포를 적합시키는 것이고, 분계점 방법은 충분히 큰 하나의 분계점을 넘어서는 초과값들의 초과여분들에 대하여 일반화파레토분포를 적합시키는 것이다. 분계점 방법의 한 변형체로서 본 논문에서는 분계점 방법에 추가적으로 초과값들의 전체 개수가 포아송분포를 따른다고 가정하는 포아송-GPD 방법을 다루고, 이를 1988.01.04부터 2009.12.31까지 수집된 서부텍사스산중질유의 현물가격 자료로부터 계산된 일일 상승율과 일일 하락율에 적용한다. 이에 따르면 일일 상승율과 일일 하락율의 분포는 정규분포와 달리 두터운 꼬리를 갖는 분포로 나타났는데, 이는 오늘날의 많은 금융 자료분석에서 나타나는 일반적인 현상과 잘 부합하는 것이다.

점과정 기법을 이용한 VaR추정의 성과 (Performance of VaR Estimation Using Point Process Approach)

  • 여성칠;문성주
    • 응용통계연구
    • /
    • 제23권3호
    • /
    • pp.471-485
    • /
    • 2010
  • 금융위험의 위험관리를 위한 도구로서 현재 VaR가 널리 이용되고 있다. VaR의 측정은 사용의 편리상 정규분포를 가정하여 이루어져 왔으나 좀 더 정확한 VaR의 산출을 위해 최근 극단치이론을 이용한 추정방법이 관심을 끌고 있다. 지금까지 극단치이론을 이용하여 VaR의 추정을 위한 확률모형에는 주로 GEV모형과 GPD모형이 사용되고 있다. 본 논문에서는 기존의 EV모형이 갖는 문제점들을 극복하고 좀 더 정확한 VaR를 측정하기위한 노력으로 PP모형을 제시하였다. PP모형은 확률과정의 관점에서 GEV모형과 GPD모형을 포괄하는 모형으로서 기존의 EV모형을 일반화시키는 모형이라고 할 수 있다. PP모형이 기존의 정규분포와 두 EV모형에 비해 VaR추정의 성과가 우수함을 실증분석을 통해 보여주었다.