• Title/Summary/Keyword: GOSAT

Search Result 12, Processing Time 0.016 seconds

Improvement of Cloud-data Filtering Method Using Spectrum of AERI (AERI 스펙트럼 분석을 통한 구름에 영향을 받은 스펙트럼 자료 제거 방법 개선)

  • Cho, Joon-Sik;Goo, Tae-Young;Shin, Jinho
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.137-148
    • /
    • 2015
  • The National Institute of Meteorological Research (NIMR) has operated the Fourier Transform InfraRed (FTIR) spectrometer which is the Atmospheric Emitted Radiance Interferometer (AERI) in Anmyeon island, Korea since June 2010. The ground-based AERI with similar hyper-spectral infrared sensor to satellite could be an alternative way to validate satellite-based remote sensing. In this regard, the NIMR has focused on the improvement of retrieval quality from the AERI, particularly cloud-data filtering method. The AERI spectrum which is measured on a typical clear day is selected reference spectrum and we used region of atmospheric window. We performed test of threshold in order to select valid threshold. We retrieved methane using new method which is used reference spectrum, and the other method which is used KLAPS cloud cover information, each retrieved methane was compared with that of ground-based in-situ measurements. The quality of AERI methane retrievals of new method was significantly more improved than method of used KLAPS. In addition, the comparison of vertical total column of methane from AERI and GOSAT shows good result.

Airborne In-situ Measurement of CO2 and CH4 in Korea: Case Study of Vertical Distribution Measured at Anmyeon-do in Winter (항공기를 이용한 온실가스 CO2와 CH4의 연속관측: 안면도 겨울철 연직분포사례 분석)

  • Li, Shanlan;Goo, Tae-Young;Moon, Hyejin;Labzovskii, Lev;Kenea, Samuel Takele;Oh, Young-Suk;Lee, Haeyoung;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.511-523
    • /
    • 2019
  • A new Korean Meteorological Administration (KMA) airborne measurement platform has been established for regular observations for scientific purpose over South Korea since late 2017. CRDS G-2401m analyzer mounted on the King Air 350HW was used to continuous measurement of CO2, CH4 and CO mole fraction. The total uncertainty of measurements was estimated to be 0.07 ppm for CO2, 0.5 ppb for CH4, and 4.2 ppb for CO by combination of instrument precision, repeatability test simulated in-flight condition and water vapor correction uncertainty. The airborne vertical profile measurements were performed at a regional Global Atmosphere Watch (GAW) Anmyeon-do (AMY) station that belongs to the Total Carbon Column Observing Network (TCCON) and provides concurrent observations to the Greenhouse Gases Observing Satellite (GOSAT) overpasses. The vertical profile of CO2 shows clear altitude gradient, while the CH4 shows non-homogenous pattern in the free troposphere over Anmyeon-do. Vertically averaged CO2 at the altitude between 1.5 and 8.0km are lower than AMY surface background value about 7 ppm but higher than that observed in free troposphere of western pacific region about 4 ppm, respectively. CH4 shows lower level than those from ground GAW stations, comparable with flask airborne data that was taken in the western pacific region. Furthermore, this study shows that the combination of CH4 distribution in free troposphere and trajectory analysis, taking account of convective mixing, is a useful tool in investigating CH4 transport processes from tropical region to Korean region in winter season.