• 제목/요약/키워드: GOCI data

검색결과 135건 처리시간 0.02초

GOCI-II 대기보정 알고리즘의 소개 및 초기단계 검증 결과 (Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations)

  • 안재현;김광석;이은경;배수정;이경상;문정언;한태현;박영제
    • 대한원격탐사학회지
    • /
    • 제37권5_2호
    • /
    • pp.1259-1268
    • /
    • 2021
  • '천리안 해양위성 2호(2nd Geostationary Ocean Color Imager: GOCI-II)는 천리안 해양위성 1호(GOCI)의 후속위성으로 1개의 근자외 채널(380 nm), 8개의 가시광 채널(412, 443, 490, 510, 555, 620, 660, 680 nm), 3개의 근적외 채널(709, 745, 865 nm)의 총 12개 파장대에서 다분광 관측을 하며, 1시간 간격의 시간 해상도로 한반도 주변 동북아 해양, 1일 간격으로 반구(full disk)영역의 해양 환경 자료를 생산한다. 해색 자료처리의 첫 단계로 대기 상층 복사휘도에서 해수표면 반사도를 계산하는 대기보정을 수행하며, GOCI-II의 표준 대기보정은 GOCI 대기보정 방법에 이론적인 기반을 두고 있으며, GOCI-II에 새로 추가된 밴드 중 620, 709 nm를 이용하여 탁도가 높은 해역에서의 대기보정 성능을 향상시켰다. 본 연구에서는 GOCI-II 지상국 시스템에 구현 되어있는 대기보정 알고리즘을 우선 소개하고, 현장 측정 원격반사도 자료를 이용하여 초기단계 검증을 수행하였다. 검증은 1차적으로 대양에서 수집된 현장 자료와의 비교를 통해 수행하였으며 여기서의 대기보정 정확도는 대양 대기보정 정확도 요구범위인 청색 파장대 오차율 5% 이내의 범위를 만족시켰다. 그러나 연안의 해양관측타워에 설치된 무인 관측장비인 AERONET-OC로 수집된 원격반사도 자료를 이용한 추가적인 검증결과에서는 대양과 달리 높은 오차율을 보여주었다. 연안에서의 대기보정 정확도는 추후 추가적인 근적외 파장대 대리교정을 통해 보완이 가능할 것으로 보이며, 지속적인 검보정 활동을 통해 수집된 현장자료들을 이용할 경우 연안뿐 아니라 전체적인 대기보정 성능 향상이 가능할 것으로 기대된다. 이후 검보정 활동을 통해 개선된 대기보정은 주기적으로 GOCI-II 지상국 시스템에 반영하여 재처리 및 재 배포를 수행할 예정이다.

천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과 (Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II)

  • 배수정;이은경;;이경상;김민상;최종국;안재현
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1565-1576
    • /
    • 2023
  • 천리안 해양위성 2호(Geostationary Ocean Color Imager-II, GOCI-II)에서 관측된 대기상층 복사휘도에서 해양환경 분석이 가한 원격반사도(remote-sensing reflectance, Rrs) 자료를 얻기 위해서 복사 전달 모델 기반의 대기 보정을 수행한다. 이 Rrs는 다시 엽록소, 총부유사, 용존유기물 농도 등의 다양한 해양환경변수 산출에 이용되고 있기 때문에 대기보정은 모든 해색 산출물의 정확도에 영향을 주는 중요한 알고리즘이다. 맑은 해역에서는 대기의 복사휘도가 청색 파장대의 해수 복사휘도보다 10배 이상 높다. 따라서 대기보정 과정에서 1%의 대기 복사휘도 추정 오차가 10% 이상의 Rrs 오차를 유발할 수 있으며, 이처럼 대기보정은 매우 높은 오차 민감도를 가진 알고리즘이다. 그 결과 대기보정 산출물인 Rrs의 품질 평가는 신뢰성 있는 해양 위성 기반 자료 분석을 위해 반드시 선행되어야 한다. 본 연구에서는 Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS)을 통해 데이터베이스화 된 현장 측정 Rrs 기반 통계적 신뢰성을 평가하는 Quality Assurance (QA) 알고리즘을 GOCI-II의 분광 특성에 맞게 수정 및 적용하였다. 이 방법은 National Oceanic and Atmospheric Administration (NOAA)의 해색위성 자료처리 시스템에 공식적으로 적용되어 서비스 중이며, Rrs의 품질 분석 점수(0~1점)를 제공할 뿐 아니라 해수의 유형(23 유형)도 구분해 준다. 실제로 검보정 초기 단계의 GOCI-II 자료에 QA를 적용한 결과, Rrs는 비교적 낮은 값인 0.625에서 가장 높은 빈도를 보여주었지만 추가적인 검보정을 통해 개선된 GOCI-II 대기보정 결과에 QA 알고리즘을 적용했을 시 기존보다 높은 0.875에서 가장 높은 빈도를 보여주었다. QA 알고리즘을 통한 해수 유형 분석 결과, 동해 및 남해 일부 그리고 북서태평양 해역은 주로 탁도가 낮은 case-I 해역이었으며 서해 연안 및 동중국해는 주로 탁도가 높은 case-II 해역으로 구분되었다. 이처럼 QA 알고리즘의 적용을 통해 대기보정 과정에서 오차가 크게 발생한 Rrs 자료를 객관적으로 판별하여 배제할 수 있으며 이는 배포자료 및 검보정의 신뢰도 향상으로 이어질 수 있다. 본 방법은 추후 GOCI-II의 대기보정 flag에 적용되어 사용자들이 양질의 Rrs 자료만을 적용할 수 있도록 도움을 줄 것이다.

COMS 해양탑재체의 비선형성 특성 분석 (Analysis of Non-linearity Characteristic of GOCI)

  • 강금실;윤형식
    • 항공우주기술
    • /
    • 제8권2호
    • /
    • pp.1-7
    • /
    • 2009
  • 세계최초의 정지궤도 해양탑재체인 GOCI(Geostationary Ocean Color Imager)는 정지궤도 복합위성인 COMS(Communication, Ocean, and Meteorological Satellite)에 기상탑재체, 통신탑재체와 함께 탑재되기 위해 개발되고 있다. 본 논문에서는 부분품 레벨의 응답특성을 이용한 탑재체 레벨의 복사모델 수립방법을 소개하며, 복사모델을 이용하여 각 채널의 비선형성 특성을 분석한다. 또한, 해양탑재체의 복사시험 데이터를 이용하여 각 채널의 비선형 특성을 검증한다. 분석 결과, 선형이득과 비선형이득의 함수로 표현되는 비선형성$G^3$/b는 모든 채널에 대해 동일함을 확인하였다.

  • PDF

GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구 (A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II)

  • 이진교;김근용;유주형
    • 대한원격탐사학회지
    • /
    • 제37권5_2호
    • /
    • pp.1329-1340
    • /
    • 2021
  • 해양과 육상사이의 전이지대인 조간대는 인위적 활동과 자연적 교란에 의해 다양한 변화가 빠르게 일어나 지속적인 모니터링이 필요하다. 원격탐사 방법을 활용한 연안지형변화 모니터링은 조간대 접근성에 대한 한계를 극복하고, 조간대의 장기적인 지형변화를 관측하는데 효과적인 것으로 평가된다. 원격탐사를 이용한 기존 연안지형 모니터링연구는 대부분 Landsat 위성시리즈와 Sentinel 위성 영상 분석을 통해 수행되었다. 본 연구는 GOCI-II(천리안 해양위성 2호)영상에서 NDWI 지수를 이용해 수륙경계선을 추출한 후 다양한 조위에 따른 경기만 일대 조간대 면적 변화를 파악하고 짧은 기간 동안 DEM제작과 지형고도변화 관측의 유용성에 대해 살펴보았다. 2020년 10월 8일부터 2021년 8월 16일까지 경기만 일대에서 획득된 영상은 GOCI-II 249장, Sentinel-2A/B 39장, Landsat 8 OLI는 7장이었다. 조간대 DEM을 제작할 경우, Sentinel과 Landsat 영상은 최소 3개월에서 1년 이상의 자료수집이 필요했지만, GOCI-II 위성은 단 하루의 자료를 이용해서 조위에 따른 경기만 일대 조간대 DEM생성이 가능하였고 조간대 노출빈도 계산을 통해 지형고도변화도 관측하였다. GOCI-II 위성을 활용해 연안지형변화를 관측시 짧은 주기의 높은 시간해상도로 지형 변화를 조기 감지하고 부족한 공간해상도는 고해상도의 다중복합자료를 이용해 정밀하게 보간하여 활용하는 방안이 좋을 것으로 생각된다. 향후, 위 결과들을 바탕으로 연구 영역을 확대하고, 자동 분석 및 탐지 가능한 기술 개발을 통해 한반도 연안의 최신 지형도와 연안관리에 필요한 정보를 빠르게 제공 가능할 것으로 기대된다.

GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석 (GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis)

  • 김민상;박명숙;안재현;강금실
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1541-1551
    • /
    • 2023
  • 해색위성 원격탐사에서 광학센서에서 측정된 전자기 시그날을 태양광 복사휘도로 산출하는 것은 해양 환경 모니터링의 시작이 되는 중요 단계이다. 일반적으로 광학센서가 임무 기간 수많은 촬영을 하면서 감쇄가 일반적이며 이로 인해 발생하는 복사 보정의 불확도는 해수원격반사도, 엽록소-a 농도, 유색용존유기물 등 최종 산출물에 영향을 미치기 때문에, 국제적으로 해색위성의 임무기간 중 자료 연속성을 위한 복사보정의 중요성을 강조해 왔다. 본 연구는 Geostationary Ocean Color Imager-II (GOCI-II) 위성의 지속적인 품질과 정확성을 확보하기 위해 GOCI-II의 복사 보정 알고리즘을 개선 방법을 제시한다. GOCI-II는 궤도상 복사 보정 장치인 태양광 확산기(Solar Diffuser, SD)를 사용하여 gain을 지속적으로 측정하였다. 시계열 분석 결과 gain이 방위각에 따라 계절적 변동을 보임과 동시에 센서의 노후화 가능성을 고려해야 함을 확인하였다. 본 연구에서는 방위각 보정 모델을 도입하여 계절 주기성을 제거하였고, 센서 감쇄 보정 모델을 통해 복사 이득의 비선형적 추세를 산출하였다. 본 연구에서 개선된 복사 보정 알고리즘을 적용하여 대기 최상층(Top of Atmosphere, TOA) 복사휘도의 스펙트럼에 미치는 영향을 확인하였고, 이는 GOCI-II 데이터의 장기적인 안정성 확보를 통해 신뢰성 있는 위성 산출물을 제공함으로써 장기간 트렌드 분석 및 해양 환경 모니터링에 기여할 것으로 기대된다.

GOCI 위성영상과 기계학습을 이용한 한반도 연안 수질평가지수 추정 (Estimation of Water Quality Index for Coastal Areas in Korea Using GOCI Satellite Data Based on Machine Learning Approaches)

  • 장은나;임정호;하성현;이상균;박영규
    • 대한원격탐사학회지
    • /
    • 제32권3호
    • /
    • pp.221-234
    • /
    • 2016
  • 우리나라는 대규모 산업단지와 대도시들이 연안에 집중되면서 연안의 오염이 날로 심각해지고 있다. 이러한 연안 오염을 모니터링하기 위해서 위성 영상을 이용한 연안 수질평가지수 모니터링 연구가 수행될 필요가 있다. 수질평가지수란 저층 산소포화도, 엽록소 농도, 투명도, 용존무기질소 및 용존무기인 농도를 수질평가 항목으로 구성하여 해양환경관리법에 따른 해양환경기준을 통해 해역별로 기준을 설정하여 산출하는 지수이다. 이 연구는 한반도 주변의 연안지역을 대상으로 2011년부터 2013년까지의 현장관측 자료 및 Geostationary Ocean Color Imager (GOCI) 위성 영상을 이용하여 연안 표층 해수에 대한 기계학습 기반의 두 가지 수질평가지수 추정 기법을 개발하였다. 첫 번째 방법으로는 GOCI 반사도를 이용하여 추정된 수질평가 항목들로 수질평가지수를 계산하였고, 두 번째 방법은 GOCI 반사도 및 산출물(엽록소 농도, 총 부유물질, 용존유기물)을 이용하여 수질평가지수를 추정하였다. 기계학습으로는 Random Forest(RF), Support Vector Regression (SVR), Cubist를 사용하였다. 수질평가 항목 추정에서 투명도의 정확도가 가장 높게 나타났으며, 모든 수질평가 항목 추정에서 세 가지 기계학습 중 RF의 정확도가 가장 높았다. 하지만 추정된 수질평가 항목들로 계산한 수질평가지수는 추정된 수질평가 항목들의 오차와 저층 산소포화도의 불확실성으로 인해 정확도가 높지는 않았다. 반면 GOCI 반사도와 산출물을 이용하여 추정한 수질평가지수는 현장 관측 기반 수질평가지수와 비교했을 때 첫 번째 방법보다 정확도가 높게 나타났다. 또한 엽록소 농도가 수질평가지수 추정에 가장 중요한 변수로 나타났다.

동해 연안역 일차생산량 추정을 위한 GOCI 자료 적용 (Application of GOCI to the Estimates of Primary Productivity in the Coastal Waters of the East Sea)

  • 최종국;안재현;손영백;황득재;이순주
    • 대한원격탐사학회지
    • /
    • 제36권2_2호
    • /
    • pp.237-247
    • /
    • 2020
  • 이 연구에서는 GOCI 자료로부터 산출된 엽록소농도(CHL), 광합성유효광량(PAR), 진광층 깊이 및 국외 위성 기반의 해수면온도자료(SST)를 이용하여 동해 연안의 일차생산량 지도를 작성하고, 각 인자들에 대한 민감도 분석을 실시하였다. 광범위한 냉수대가 발현한 2013년 7월 25일과 대규모 적조가 발생한 2013년 8월 13일에는 평균 1,012 mg C m-2 d-1 및 1,945 mg C m-2 d-1의 높은 일차생산량을 보였다. 냉수대와 적조가 물러난 2013년 8월 25일에는 평균 778 mg C m-2 d-1의 일차생산량을 보여 기존 연구의 분석결과와 유사한 결과를 보였다. 민감도 분석결과, 광합성유효광량은 일차생산량 계산 결과에 큰 영향을 주지 않았으나, 진광층 깊이와 엽록소 농도는 평균 민감도인 0.5 이상의 값을 보였다. 특히 해수면 온도는 결과값에 매우 큰 변화를 가져와 해수면 온도 자료에 오류가 있을 경우 일차생산량 계산 결과에 큰 오류를 가져올 수 있는 것으로 분석되었다. 연구 결과, 일차 생산량 연구에 GOCI 자료가 활용 가능함을 확인할 수 있었으며, 하루 8회 영상획득이 가능한 GOCI를 적용함으로써 일차생산량 추정을 위한 입력변수들의 정확도가 향상되어, 국외의 극궤도 위성에 비해 정밀도가 높은 일차생산량 추정이 가능할 것으로 판단된다.

DEVELOPMENT OF CHLOROPHYLL ALGORITHM FOR GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Min, Jee-Eun;Moon, Jeong-Eon;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.162-165
    • /
    • 2007
  • Chlorophyll concentration is an important factor for physical oceanography as well as biological oceanography. For these necessity many oceanographic researchers have been investigated it for a long time. But investigation using vessel is very inefficient, on the other hands, ocean color remote sensing is a powerful means to get fine-scale (spatial and temporal scale) measurements of chlorophyll concentration. Geostationary Ocean Color Imager (GOCI), for ocean color sensor, loaded on COMS (Communication, Ocean and Meteorological Satellite), will be launched on late 2008 in Korea. According to the necessity of algorithm for GOCI, we developed chlorophyll algorithm for GOCI in this study. There are two types of chlorophyll algorithms. One is an empirical algorithm using band ratio, and the other one is a fluorescence-based algorithms. To develop GOCI chlorophyll algorithm empirically we used bands centered at 412 nm, 443 nm and 555 nm for the DOM absorption, chlorophyll maximum absorption and for absorption of suspended solid material respectively. For the fluorescence-based algorithm we analyzed in-situ remote sensing reflectance $(R_{rs})$ data using baseline method. Fluorescence Line Height $({\Delta}Flu)$ calculated from $R_{rs}$ at bands centered on 681 nm and 688 nm, and ${\Delta}Flu_{(area)}$ are used for development of algorithm. As a result ${\Delta}Flu_{(area)}$ method leads the best fitting for squared correlation coefficient $(R^2)$.

  • PDF

정지궤도 해색탑재체(GOCI) 전처리시스템 (Introduction to Image Pro-processing Subsystem of Geostationary Ocean Color Imager (GOCI))

  • 서석배;임현수;안상일
    • 대한원격탐사학회지
    • /
    • 제26권2호
    • /
    • pp.167-173
    • /
    • 2010
  • 본 논문은 통신해양기상위성에 탑재된 해양탑재체의 관측자료를 지상에서 처리하는 영상전처리 시스템을 소개하는 것으로, 주요 기능, 개발 과정, 운영 계획으로 나누어 기술한다. 해양탑재체 영상전처리시스템은 주 시스템과 백업 시스템이 해양위성센터 (한국해양연구원)와 위성운영센터 (한국항공우주연구원)에 각각 설치되어 있으며, 현재 모든 시험을 완료하고 위성 발사 전의 최종 시험 운영 중에 있다. 해양탑재체 영상전처리시스템이 제공할 통신해양기상위성의 해양데이터는 정지궤도에서 연속적으로 한반도 주변을 관측한 것으로서, 해수 온도 변화나 해양 생태계 등의 해양환경연구에 중요한 자료로 활용 가능할 것으로 기대되고 있다.

Land Cover Classification Map of Northeast Asia Using GOCI Data

  • Son, Sanghun;Kim, Jinsoo
    • 대한원격탐사학회지
    • /
    • 제35권1호
    • /
    • pp.83-92
    • /
    • 2019
  • Land cover (LC) is an important factor in socioeconomic and environmental studies. According to various studies, a number of LC maps, including global land cover (GLC) datasets, are made using polar orbit satellite data. Due to the insufficiencies of reference datasets in Northeast Asia, several LC maps display discrepancies in that region. In this paper, we performed a feasibility assessment of LC mapping using Geostationary Ocean Color Imager (GOCI) data over Northeast Asia. To produce the LC map, the GOCI normalized difference vegetation index (NDVI) was used as an input dataset and a level-2 LC map of South Korea was used as a reference dataset to evaluate the LC map. In this paper, 7 LC types(urban, croplands, forest, grasslands, wetlands, barren, and water) were defined to reflect Northeast Asian LC. The LC map was produced via principal component analysis (PCA) with K-means clustering, and a sensitivity analysis was performed. The overall accuracy was calculated to be 77.94%. Furthermore, to assess the accuracy of the LC map not only in South Korea but also in Northeast Asia, 6 GLC datasets (IGBP, UMD, GLC2000, GlobCover2009, MCD12Q1, GlobeLand30) were used as comparison datasets. The accuracy scores for the 6 GLC datasets were calculated to be 59.41%, 56.82%, 60.97%, 51.71%, 70.24%, and 72.80%, respectively. Therefore, the first attempt to produce the LC map using geostationary satellite data is considered to be acceptable.