• Title/Summary/Keyword: GOCI Images

Search Result 51, Processing Time 0.018 seconds

Application of Multi-satellite Sensors to Estimate the Green-tide Area (황해 부유 녹조 면적 산출을 위한 멀티 위성센서 활용)

  • Kim, Keunyong;Shin, Jisun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.339-349
    • /
    • 2018
  • The massive green tide occurred every summer in the Yellow Sea since 2008, and many studies are being actively conducted to estimate the coverage of green tide through analysis of satellite imagery. However, there is no satellite images selection criterion for accurate coverage calculation of green tide. Therefore, this study aimed to find a suitable satellite image from for the comparison of the green tide coverage according to the spatial resolution of satellite image. In this study, Landsat ETM+, MODIS and GOCI images were used to coverage estimation and its spatial resolution is 30, 250 and 500 m, respectively. Green tide pixels were classified based on the NDVI algorithm, the difference of the green tide coverage was compared with threshold value. In addition, we estimate the proportion of the green tide in one pixel through the Linear Spectral Unmixing (LSU) method, and the effect of the difference of green tide ratio on the coverage calculation were evaluated. The result of green tide coverage from the calculation of the NDVI value, coverage of green tide usually overestimate with decreasing spatial resolution, maximum difference shows 1.5 times. In addition, most of the pixels were included in the group with less than 0.1 (10%) LSU value, and above 0.5 (50%) LSU value accounted for about 2% in all of three images. Even though classified as green tide from the NDVI result, it is considered to be overestimated because it is regarded as the same coverage even if green tide is not 100% filled in one pixel. Mixed-pixel problem seems to be more severe with spatial resolution decreases.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.

Tracing the trajectory of pelagic Sargassum using satellite monitoring and Lagrangian transport simulations in the East China Sea and Yellow Sea

  • Kwon, Kyungman;Choi, Byoung-Ju;Kim, Kwang Young;Kim, Keunyong
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.315-326
    • /
    • 2019
  • Northeastward drifts of massive Sargassum patches were observed in the East China Sea (ECS) and Yellow Sea (YS) by the Geostationary Ocean Color Imager (GOCI) in May 2017. Coverage of the brown macroalgae patches was the largest ever recorded in the ECS and YS. Three-dimensional circulation modeling and Lagrangian particle tracking simulations were conducted to reproduce drifting trajectories of the macroalgae patches. The trajectories of the macroalgae patches were controlled by winds as well as surface currents. A windage (leeway) factor of 1% was chosen based on sensitivity simulations. Southerly winds in May 2017 contributed to farther northward intrusion of the brown macroalgae into the YS. Although satellite observation and numerical modeling have their own limitations and associated uncertainties, the two methods can be combined to find the best estimate of Sargassum patch trajectories. When satellites were unable to capture all patches because of clouds and sea fog in the ECS and YS, the Lagrangian particle tracking model helped to track and restore the missing patches in satellite images. This study suggests that satellite monitoring and numerical modeling are complementary to ensure accurate tracking of macroalgae patches in the ECS and YS.

Delineation of Rice Productivity Projected via Integration of a Crop Model with Geostationary Satellite Imagery in North Korea

  • Ng, Chi Tim;Ko, Jonghan;Yeom, Jong-min;Jeong, Seungtaek;Jeong, Gwanyong;Choi, Myungin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.57-81
    • /
    • 2019
  • Satellite images can be integrated into a crop model to strengthen the advantages of each technique for crop monitoring and to compensate for weaknesses of each other, which can be systematically applied for monitoring inaccessible croplands. The objective of this study was to outline the productivity of paddy rice based on simulation of the yield of all paddy fields in North Korea, using a grid crop model combined with optical satellite imagery. The grid GRAMI-rice model was used to simulate paddy rice yields for inaccessible North Korea based on the bidirectional reflectance distribution function-adjusted vegetation indices (VIs) and the solar insolation. VIs and solar insolation for the model simulation were obtained from the Geostationary Ocean Color Imager (GOCI) and the Meteorological Imager (MI) sensors of the Communication Ocean and Meteorological Satellite (COMS). Reanalysis data of air temperature were achieved from the Korea Local Analysis and Prediction System (KLAPS). Study results showed that the yields of paddy rice were reproduced with a statistically significant range of accuracy. The regional characteristics of crops for all of the sites in North Korea were successfully defined into four clusters through a spatial analysis using the K-means clustering approach. The current study has demonstrated the potential effectiveness of characterization of crop productivity based on incorporation of a crop model with satellite images, which is a proven consistent technique for monitoring of crop productivity in inaccessible regions.

Improvement of Satellite Ocean Information Service for Offshore Marine Industry (연근해 해양산업을 위한 위성해양 정보 서비스 개선방안)

  • Cho, Bo-Hyun;Lee, Gun-Wook;Kim, Dong-Chun;Yang, Keum-Cheol;Kim, SG;Yo, Seung-jae
    • Convergence Security Journal
    • /
    • v.18 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • In this study, we design a marine environmental information service system with satellite images based on satellite images to reduce the damage caused by changes in the marine environment. The system provides satellite oceanographic information such as water temperature, chlorophyll, float, etc. as hierarchical texts, which is implemented as a unit module Web service so that it can be expanded in OpenAPI environment. And stability of system plug-in portability, service hours, data extraction precision and speed are used as a basis for diagnosing service stability. By securing the function and performance of the service system implemented in this study, it can be expanded to a complex technology that can customize the users by group by adding not only general services of existing systems operated by location but also information about a specific interested areas. Especially, various other items of interest including marine environment information are developed in modules, so we expect to be able to expand and service the system by plugging into the system and to spread it in technical linkage with the related institution information system.

  • PDF

Spatial Gap-Filling of Hourly AOD Data from Himawari-8 Satellite Using DCT (Discrete Cosine Transform) and FMM (Fast Marching Method)

  • Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Kang, Jonggu;Kim, Geunah;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.777-788
    • /
    • 2021
  • Since aerosol has a relatively short duration and significant spatial variation, satellite observations become more important for the spatially and temporally continuous quantification of aerosol. However, optical remote sensing has the disadvantage that it cannot detect AOD (Aerosol Optical Depth) for the regions covered by clouds or the regions with extremely high concentrations. Such missing values can increase the data uncertainty in the analyses of the Earth's environment. This paper presents a spatial gap-filling framework using a univariate statistical method such as DCT-PLS (Discrete Cosine Transform-based Penalized Least Square Regression) and FMM (Fast Matching Method) inpainting. We conducted a feasibility test for the hourly AOD product from AHI (Advanced Himawari Imager) between January 1 and December 31, 2019, and compared the accuracy statistics of the two spatial gap-filling methods. When the null-pixel area is not very large (null-pixel ratio < 0.6), the validation statistics of DCT-PLS and FMM techniques showed high accuracy of CC=0.988 (MAE=0.020) and CC=0.980 (MAE=0.028), respectively. Together with the AI-based gap-filling method using extra explanatory variables, the DCT-PLS and FMM techniques can be tested for the low-resolution images from the AMI (Advanced Meteorological Imager) of GK2A (Geostationary Korea Multi-purpose Satellite 2A), GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI2 (Geostationary Ocean Color Imager) of GK2B (Geostationary Korea Multi-purpose Satellite 2B) and the high-resolution images from the CAS500 (Compact Advanced Satellite) series soon.

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.

Moon Imaging for the Calibration of the COMS Meteorological Imager (천리안 위성의 기상탑재체 보정을 위한 달 영상 획득 방안)

  • Park, Bong-Kyu;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 2010
  • COMS accommodates multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. In order to improve the quality of MI visible channel, the moon image has been taken into account as backup reference in addition to Albedo monitoring. However, obtaining the moon image by adding special mission schedule is not recommended after IOT, because we may miss chances to obtain meteorological images during the time slots for special imaging. As an alternative solution, an approach extracting moon image from MI FD(Full Disk) image has been proposed when the moon is positioned near to the earth. However, prediction of acquisition time of moon image is somewhat difficult as the moon moves while the MI is scanning type sensor. And the moon can not be seen when it is behind the earth or outside of FD field of view. This paper discusses how effectively the moon can be detected by the MI FD imaging. For that purpose, this paper describes an approach taken to predict the time when the moon image is achievable and then introduces the results obtained from computer simulation.

Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model and Decision Tree Model (로지스틱 회귀모형과 의사결정나무 모형을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Heung-Min;Kim, Bum-Kyu;Hwang, Do-Hyun;Unuzaya, Enkhjargal;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.777-786
    • /
    • 2018
  • This study propose a new method to detect Cochlodinium polykrikoides on satellite images using logistic regression and decision tree. We used spectral profiles(918) extracted from red tide, clear water and turbid water as training data. The 70% of the entire data set was extracted and used for model training, and the classification accuracy of the model was evaluated by using the remaining 30%. As a result of the accuracy evaluation, the logistic regression model showed about 97% classification accuracy, and the decision tree model showed about 86% classification accuracy.

Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model under Imbalanced Data (불균형 데이터 환경에서 로지스틱 회귀모형을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Heung-Min;Kim, Bum-Kyu;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1353-1364
    • /
    • 2018
  • This study proposed a method to detect Cochlodinium polykrikoides red tide pixels in satellite images using a logistic regression model of machine learning technique under Imbalanced data. The spectral profiles extracted from red tide, clear water, and turbid water were used as training dataset. 70% of the entire data set was extracted and used for as model training, and the classification accuracy of the model was evaluated using the remaining 30%. At this time, the white noise was added to the spectral profile of the red tide, which has a relatively small number of data compared to the clear water and the turbid water, and over-sampling was performed to solve the unbalanced data problem. As a result of the accuracy evaluation, the proposed algorithm showed about 94% classification accuracy.