• Title/Summary/Keyword: GNSS network

Search Result 132, Processing Time 0.024 seconds

Assessing the Positioning Accuracy of High density Point Clouds produced from Rotary Wing Quadrocopter Unmanned Aerial System based Imagery (회전익 UAS 영상기반 고밀도 측점자료의 위치 정확도 평가)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.39-48
    • /
    • 2015
  • Lately, Unmanned Aerial Vehicles(UAV), Unmanned Aerial Systems(UAS) or also often known as drones, as a data acquisition platform and as a measurement instrument are becoming attractive for many photogrammetric surveying applications, especially generation of the high density point clouds(HDPC). This paper presents the performance evaluation of a low-cost rotary wing quadrocopter UAS for generation of the HDPC in a test bed environment. Its performance was assessed by comparing the coordinates of UAS based HDPC to the results of Network RTK GNSS surveying with 62 ground check points. The results indicate that the position RMSE of the check points are ${\sigma}_H={\pm}0.102m$ in Horizonatal plane, and ${\sigma}_V={\pm}0.209m$ in vertical, and the maxium deviation of Elevation was 0.570m within block area of ortho-photo mosaic. Therefore the required level of accuracy at NGII for production of ortho-images mosaic at a scale of 1:1000 was reached, UAS based imagery was found to make use of it to update scale 1:1000 map. And also, since this results are less than or equal to the required level in working rule agreement for airborne laser scanning surveying of NGII for Digital Elevation Model generation of grids $1m{\times}1m$ and 1:1000 scale, could be applied with production of topographic map and ortho-image mosaic at a scale of 1:1000~1:2500 over small-scale areas.

GPS-based monitoring and modeling of the ionosphere and its applications for high accuracy correction in China

  • Yunbin, Yuan;Jikun, Ou;Xingliang, Huo;Debao, Wen;Genyou, Liu;Yanji, Chai;Renggui, Yang;Xiaowen, Luo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.203-208
    • /
    • 2006
  • The main research conducted previously on GPS ionosphere in China is first introduced. Besides, the current investigations include as follows: (1) GPS-based spatial environmental, especially the ionosphere, monitoring, modeling and analysis, including ground/space-based GPS ionosphere electron density (IED) through occultation/tomography technologies with GPS data from global/regional network, development of a GNSS-based platform for imaging ionosphere and atmosphere (GPFIIA), and preliminary test results through performing the first 3D imaging for the IED over China, (2) The atmospheric and ionospheric modeling for GPS-based surveying, navigation and orbit determination, involving high precisely ionospheric TEC modeling for phase-based long/median range network RTK system for achieving CM-level real time positioning, next generation GNSS broadcast ionospheric time-delay algorithm required for higher correction accuracy, and orbit determination for Low-Earth-orbiter satellites using single frequency GPS receivers, and (3) Research products in applications for national significant projects: GPS-based ionospheric effects modeling for precise positioning and orbit determination applied to China's manned space-engineering, including spatial robot navigation and control and international space station intersection and docking required for related national significant projects.

  • PDF

A Study on the Safety Monitoring of Bridge Facilities based on Smart Sensors (스마트 센서 기반의 교량 시설물 안전 모니터링 기법 연구)

  • YEON, Sang-Ho;KIM, Joon-Soo;YEON, Chun-Hum
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.97-106
    • /
    • 2019
  • Today, many smart sensor's measurement instruments are used to check the safety situation of various medium and large bridge structures that should be maintained in the construction facilities, but most of them use the method of measuring and confirming the displacement behavior of the bridge at regular intervals. In order to continuously check the safety situation, various measuring instruments are used, but most of them are not able to measure and measure the displacement and behavior of main construction structures at regular intervals. In this study, GNSS and environment smart sensors and drone's image data are transmitted to wireless network so that risk of many bridge's structures can be detected beforehand. As a result, by diagnosing the fine displacement of the bridge in real time and its condition, reinforcement, repair and disaster prevention measures for the structural parts of the bridges, which are expected to be dangerous, and various disasters and accidents can be prevented, and disaster can be prevented could suggest a new alternative.

The Status of DGNSS & Experimental Test of DGPS in Korea

  • sub, Ko-Kwang;mo, Chung-Se
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1997.10a
    • /
    • pp.71-86
    • /
    • 1997
  • DGNSS(Differential GNSS) may be the most feasible positioning system to users who need the precise positioning in the future. A number of countries have carried out research and test about DGNSS based on the marine radiobeacon for improving positioning accuracy. This paper describes the status of DGNSS in the world and the system charactersitics. In special , DGNSS network of Korea to be constructed is discussed. And then DGNSS, which are operating for test, is analyzed by an experimental approach.

  • PDF

Construction of Network RTK Testbed Using Reference Stations of NGII (국토지리정보원 기준국 사용 Network RTK 테스트베드 구축)

  • Bu-Gyeom Kim;Changdon Kee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.103-110
    • /
    • 2024
  • In this paper, a test bed for real-time network Real-Time Kinematic (RTK) research was constructed using reference stations of the NGII. A group of candidate station networks was derived, including three stations in Seoul. The group consisted of four stations with a distance of less than 100 km between them. Among several candidates, a network composed of stations with short distances between them and demonstrating good data quality for all reference stations was selected as the test bed. After collecting real-time data in Radio Technical Committee for Maritime services (RTCM) format from the selected stations and conducting a noise analysis on measurements, mm-level carrier phase measurement noise was confirmed. Afterwards, the user set the reference station inside the test bed and analyzed the network RTK positioning performance of the MAC method using the GPS L1 frequency as post-processing. From the result of the analysis it was confirmed that the residual error for all users was within 10 cm after applying the correction. Additionally, after determining integer ambiguities through Least-squares AMBiguity Decorrelation Adjustment (LAMBDA), it was confirmed that the fix rate was 100%, and all ambiguities were resolved as true values.

A design process of central stations for GNSS based land transportation infrastructure network (육상교통 사용자를 위한 위성항법기반 중앙국 시스템 설계 및 구현)

  • Son, Min-Hyuk;Kim, Gue-Heon;Heo, Moon-Bum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.374-377
    • /
    • 2012
  • GNSS(Global Navigation Satellite System) based land transportation infrastructure system is consists of receiving station and central station. The functions of the central system include receiving station's data gathering and decoding, carrier correction and integrity information generated, transmission of data in real-time. In general, The central station architecture should take into account various important points relating to hardware/software of system, data archiving and checking, availability and continuity of operation, etc. There is a fundamental need for a generic design capable of being used in any situation. Also, There is need to develop an expandable and interoperable central station architecture. In this paper, the process of design and manufacture and verification will be introduced.

  • PDF

GPS Receiver and Satellite DCB Estimation using Ionospheric TEC (전리층 TEC를 이용한 GPS 수신기와 위성의 DCB 추정)

  • Choi, Byung-Kyu;Cho, Sung-Ki;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.221-228
    • /
    • 2009
  • We estimated the receiver and satellite differential code bias(DCB) based on the ionospheric total electron content(TEC) estimation method. The GPS network which has been operated by the Korea Astronomy and Space Science Institute(KASI) was designed to calculate TEC. The receiver and satellite DCB values were obtained from the weighted least square method with time interval for one hour. The results represented that the receiver DCB values are mostly varying within ${\pm}2m$ meter and are derived comparatively stable within three days. The estimated mean values of the satellite DCB show the maximum and minimum values of 4.09 nano-second(ns), -6.28ns respectively. We could detect great variations of TEC over 9 TECU difference at any time when the DCB sets were applied to TEC estimation.

Accuracy Analysis of FKP for Public Surveying and Cadastral Resurvey (공공측량 및 지적재조사 사업 적용을 위한 FKP 정밀도 분석)

  • Park, Jin Sol;Han, Joong-Hee;Kwon, Jay Hyoun;Shin, Han Sup
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.23-24
    • /
    • 2014
  • NGII (National Geographic Information Institute) has been providing VRS (Virtual Reference Station) service so that could determine precise positioning in real time since 2007. However, since the VRS service has to maintain the connected status with VRS server, the number of users who can use VRS service are limited by capacity of VRS server. To solve this problem, NGII has been providing FKP (Virtual Reference Station) service using one way telecommunication from November 1, 2012. Therefore, it is predicted that the usage of FKP service will increase in public surveying and cadastral resurveying in the future. However, the studies with respect to analysis of FKP precision for applying to public surveying and cadastral resurveying is not conducted enough. In this study, to analyse the application possibility of FKP on the public surveying and cadastral resurveying, the two kind analysis were performed. First is the analysis of accuracy according to the configuration of reference station of FKP and VRS. One is consisted of same reference stations, another is consisted of different reference stations. Second is the accuracy anlalysis of horizontal and vertical positioning acquiring VRS and FKP data in various measurement environment based on VRS regulation. Result of first study, Positioning accuracy according to the configuration of the reference stations satisfies related regulation. However, accuracy of FKP in case of different reference stations is worse than in case of same reference stations.. The result of second test shows that the horizontal precision of FKP and VRS in good measurement environment satisfy the allowed precision. However, in some case, horizontal precision of FKP and VRS in poor measurement environment exceed the allowed precision. In addition, the number of exceeding the allowed precision in the FKP is more than the VRS. The vertical precision of the VRS satisfy related work provision. In conclusion, the result of this study shows that the FKP only in open area should be used for public survey and cadastral resurvey. Therefore the additional studies with respect to the improvement of FKP precision should be conducted.

Synergy of monitoring and security

  • Casciati, Sara;Chen, Zhi Cong;Faravelli, Lucia;Vece, Michele
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.743-751
    • /
    • 2016
  • An ongoing research project is devoted to the design and implementation of a satellite based asset tracking for supporting emergency management in crisis operations. Due to the emergency environment, one has to rely on a low power consumption wireless communication. Therefore, the communication hardware and software must be designed to match requirements, which can only be foreseen at the level of more or less likely scenarios. The latter aspect suggests a deep use of a simulator (instead of a real network of sensors) to cover extreme situations. The former power consumption remark suggests the use of a minimal computer (Raspberry Pi) as data collector.

Realization of New Korean Horizontal Geodetic Datum: GPS Observation and Network Adjustment

  • Lee, Young-Jin;Lee, Hung-Kyu;Jung, Gwang-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.529-534
    • /
    • 2006
  • New geocentric geodetic datum has recently been realized in Korea, Korean Geodetic Datum 2002- KGD2002, to overcome problems due to the existing Tokyo datum, which had been used in this country since early 20th century. This transition will support modern surveying techniques, such as Global Navigation Satellite Systems (GNSS) and ensures that spatial data is compatible with other international systems. For this realization, very long baseline interferometry (VLBI) observations were initially carried out in 1995 to determine the coordinates of the origin of KGD2002 based on the International Terrestrial Reference Frame (ITRF). Continuous GPS observations were collected from 14 reference stations across Korea to compute the coordinates of 1st order horizontal geodetic control points. During the campaign, GPS observations were also collected at about 9,000 existing geodetic control points. In 2006, network adjustment with all data obtained using GPS and EDM since 1975 has been performed under the condition of fixing the coordinates of GPS continuous observation stations to compute coordinate measurements of the 2nd and 3rd geodetic control points. This paper describes the GPS campaigns which have been undertaken since 1996 and details of the network adjustment schemes. This is followed

  • PDF