• Title/Summary/Keyword: GNSS Sensor

Search Result 64, Processing Time 0.017 seconds

Characteristics and Status of Commercial System for Utilizing MMS in Geospatial Information Construction (공간정보 구축 분야의 모바일 매핑 시스템 활용을 위한 상용 시스템의 특징 및 현황 조사)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.36-41
    • /
    • 2017
  • The mobile mapping system first introduced at Ohio State University in 1991 is being developed in various forms as sensor technology develops. The mobile mapping system can acquire geospatial information around amoving object quickly using the information gathered using the position and attitude information of the moving object and the data from various sensors. The mobile mapping system can rapidly acquire large amounts of Geospatial information and MMS provides maximum productivity in the same measurement methods as existing GNSS and total stations. Currently, a variety of systems are being launched, mainly by foreign companies, and they are applied to the construction of geospatial information. On the other hand, the application of domestic technology development or production is insufficient. This paper provides basic data for the introduction of a mobile mapping system to geospatial information related business by conducting the status survey and feature analysis of a commercialized system focusing on the ground-based mobile mapping system. The research identified the current status and characteristics of high-priced, low-priced, indoor, and handheld mobile mapping systems based on vehicles and suggest that the recent system development trends are moving toward lowering the unit prices. The mobile mapping system is currently being developed as a platform for the application of geospatial information construction and the launch of low-cost models. The development of data processing technologies, such as automatic matching and the launch of low-cost models, are forming a basis for the application of mobile mapping systems in the field of geospatial information construction.

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

A USN Based Mobile Object Tracking System for the Prevention of Missing Child (미아방지를 위한 USN 기반 보호대상 이동체 위치확인 시스템)

  • Cha, Maeng-Q;Jung, Dae-Kyo;Kim, Yoon-Kee;Chong, Hak-Jin
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.453-463
    • /
    • 2008
  • The missing child problem is no more a personal problem. It became a social problem that all parents must consider. To this, this study applies USN/RFID technology integrated with GIS for the prevention of missing child. Although RFID is not designed for location sensing, but now it is regarded as a device to facilitate real time location awareness. Such advantages of RFID can be integrated with 4S(GIS/GPS/LBS/GNSS) achieving much synergy effects. In order to prevent kidnapping and missing child, it is necessary to provide a missing child preventing system using a ubiquitous computing system. Therefore, the missing child preventing system has been developed using high-tech such as RFID, GPS network, CCTV, and mobile communication. The effectiveness of the missing child prevention system can be improved through an accurate location tracking technology. This study propose and test a location sensing system using the active RFID tags. This study verifies technical applied service, and presents a system configuration model. Finally, this paper confirms missing child prevention system utilization possibility.

Monitoring and Analysis of Galileo Services Performance using GalTeC

  • Su, H.;Ehret, W.;Blomenhofer, H.;Blomenhofer, E.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.235-240
    • /
    • 2006
  • The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.

  • PDF