• Title/Summary/Keyword: GNSS Applications

Search Result 72, Processing Time 0.026 seconds

A Study of GPS Precise Ephemeris Interpolation for Maritime Precise Positioning Applications (해양 정밀측위 활용을 위한 GPS 정밀위성궤도 보간 연구)

  • Cho, Deuk-Jae;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.699-702
    • /
    • 2009
  • Currently many vessels determine an overhead obstruction by a rule of thumb based on their draft for maritime navigation. Therefore they doesn't have a good overhead obstruction clearance because vertical position of vessels varies on time by tidal. As a result, it is occurred maritime accidents that the mainmast of vessels is bumped against overhead facilities. And disaster by global warming and rising sea levels have increased casualties. So we feel keenly the necessity of warning system for not an earthquake but disaster wave such a tsunami. This paper analyzes a precise GPS ephemeris for maritime precise positioning to solve these problems. The precise GPS ephemeris provided by International GNSS service gives a difficulty to real-time application because of its sample interval. This paper proposes an effective interpolation method for real-time application, and it analyzes an accuracy of precise GPS ephemeris through an interpolation method.

A Fault Detection and Exclusion Algorithm using Particle Filters for non-Gaussian GNSS Measurement Noise

  • Yun, Young-Sun;Kim, Do-Yoon;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.255-260
    • /
    • 2006
  • Safety-critical navigation systems have to provide 'reliable' position solutions, i.e., they must detect and exclude measurement or system faults and estimate the uncertainty of the solution. To obtain more accurate and reliable navigation systems, various filtering methods have been employed to reduce measurement noise level, or integrate sensors, such as global navigation satellite system/inertial navigation system (GNSS/INS) integration. Recently, particle filters have attracted attention, because they can deal with nonlinear/non-Gaussian systems. In most GNSS applications, the GNSS measurement noise is assumed to follow a Gaussian distribution, but this is not true. Therefore, we have proposed a fault detection and exclusion method using particle filters assuming non-Gaussian measurement noise. The performance of our method was contrasted with that of conventional Kalman filter methods with an assumed Gaussian noise. Since the Kalman filters presume that measurement noise follows a Gaussian distribution, they used an overbounded standard deviation to represent the measurement noise distribution, and since the overbound standard deviations were too conservative compared to the actual distributions, this degraded the integrity-monitoring performance of the filters. A simulation was performed to show the improvement in performance of our proposed particle filter method by not using the sigma overbounding. The results show that our method could detect smaller measurement biases and reduced the protection level by 30% versus the Kalman filter method based on an overbound sigma, which motivates us to use an actual noise model instead of the overbounding or improve the overbounding methods.

  • PDF

Validation on the Utilization of Small-scale Unmanned Aerial Systems(sUAS) for Topographic Volume Calculations (토공량 산정을 위한 소형무인항공시스템의 활용성 평가)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.111-126
    • /
    • 2017
  • Small-scale UAS(Fusion technique of Unmanned Aerial Vehicles platform and Sensors, 'sUAS') opens various new applications in construction fields and so becoming progressively common due to the considerable potentials in terms of accuracy, costs and abilities. The purpose of this study is that the investigation of the validation on the utilization of sUAS for earth stockpile volume calculations on sites. For this, generate 3D models(DSM) with sUAS aerial images on an cone shaped soil stockpile approximately $270m{\times}300m{\times}20m$, which located at Baegot Life Park in Siheung-si, compared stockpile volume estimates produced by sUAS image analysis, against volume estimates obtained by GNSS Network-RTK ground surveying method which selected as the criteria of earth stockpile volume. The result through comparison and examination show(demonstrate) that there was under 2% difference between the volume calculated with the GNSS Network RTK data and the sUAV data, especially sUAS imaged-based volume estimate of a stockpile can be greatly simplified, done quickly, and very cost effective over conventional terrestrial survey methods. Therefore, with consideration of various plan to assess the height of vegetation, sUAS image-based application expected very useful both volume estimate and 3D geospatial information extraction in small and medium-sized sites.

Navitronics and Nautomatics - A New Challenges for Navigation

  • Weintrit, Adam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.449-454
    • /
    • 2006
  • The advantage of the latest technical development in the field of automation, electronics, telecommunications, informatics, geomatics and global position fixing techniques, achievement in data storing, processing, analysing, transferring and visualisation must be taken into account and applied to the maritime technology in the very near future. We should build new e-Navigation era using those technologies [16]. In the paper the Author proposes to introduce and define two new terms: navitronics - formed by analogy to mechatronics, and nautomatics - created by analogy to geomatics and telematics to be combination of those two disciplines in navigational applications.

  • PDF

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms based on GPS Code-Pseudorange Measurements (GPS 코드의사거리 기반 정밀단독측위(PPP) 알고리즘 개발 및 측위 정확도 평가)

  • Park, Kwan Dong;Kim, Ji Hye;Won, Ji Hye;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Precise Point Positioning (PPP) algorithms using GPS code pseudo-range measurements were developed and their accuracy was validated for the purpose of implementing them on a portable device. The group delay, relativistic effect, and satellite-antenna phase center offset models were applied as fundamental corrections for PPP. GPS satellite orbit and clock offsets were taken from the International GNSS Service official products which were interpolated using the best available algorithms. Tropospheric and ionospheric delays were obtained by applying mapping functions to the outputs from scientific GPS data processing software and Global Ionosphere Maps, respectively. When the developed algorithms were tested for four days of data, the horizontal and vertical positioning accuracies were 0.8-1.6 and 1.6-2.2 meters, respectively. This level of performance is comparable to that of Differential GPS, and further improvements and fine-tuning of this suite of PPP algorithms and its implementation at a portable device should be utilized in a variety of surveying and Location-Based Service applications.

An Analysis of the Navigation Parameters of Japanese DGNSS-MSAS (일본의 DGNSS인 MSAS 항법파라미터 분석)

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1619-1625
    • /
    • 2017
  • Civil global navigation satellite system (GNSS) does not meet user performance requirements for specific PNT (Positioning, Navigation, and Time) applications. Therefore, various differential systems are used to augment GNSS for improving positioning accuracy and integrity. The MTSAT satellite augmentation system (MSAS) is the Japanese satellite based augmentation system. This paper is for analyzing the characteristics of Japanese MSAS in Korean peninsula. First of all, it was done for analyzing not only DGNSS navigation signal but also the navigation parameter through simulation and experimental tests. As a result of data analyses, the sufficient navigation satellites to determine 3-D position based on DGNSS are simultaneously available at MSAS monitering station and the southern region of Korean peninsula. It was verified that the carrier to noise signals are stable to maintain the reliable 3-D position and that the level of 2m (2drms) accuracy is very similar to the ordinary worldwide DGNSS as well.

Performance Analysis of Short Baseline Integer PPP (IPPP) for Time Comparison

  • Lee, Young Kyu;Yang, Sung-hoon;Lee, Ho Seong;Lee, Jong Koo;Hwang, Sang-wook;Rhee, Joon Hyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.379-385
    • /
    • 2021
  • In order to synchronize a remote system time to the reference time like Coordinated Universal Time (UTC), it is required to compare the time difference between the two clocks. GNSS Precise Point Positioning (PPP) is one of the most general geodetic positioning methods and can be used for time and frequency transfer applications which require more precise time comparison performance than GNSS code. However, the PPP technique has a main drawback of day-boundary discontinuity which comes from the PPP model that the code measurements are applied to resolve the floating carrier-phase ambiguities. The Integer PPP (IPPP) technique is one of the methods which has been studied to compensate the day-boundary discontinuities exited in the conventional PPP. In this paper, we investigate the time and frequency capabilities of PPP and IPPP by using the measurement data obtained from two time transfer receivers which are closely located and using common reference 1 Pulse Per Second (PPS) and RF signals. From the experiment, it is investigated that the IPPP method can effectively compensate the day-boundary discontinuities without producing frequency offset. However, the PPP method can generating frequency offset which can severely degrade the time comparison performance with long-term period data.

Technical Trends of GNSS Clock Anomaly Detection and Resolution (항법위성시계 노후에 따른 이상 현상 감지 및 극복 기술현황)

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom;Sim, Eun-Sup
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • The current GPS constellation consists of 32 Block IIA/IIR/IIR-M satellites including 12 Block IIA satellites on service over 15 years. The satellites in poor space conditions may suffer from anomalies, especially influenced by aging atomic clocks which are of importance positioning and timing. Recently, the IGS Ultra-rapid predicted products have not shown acceptably high quality prediction performance because the Block IIA cesium clocks may be easily affected by various factors such as temperature and environment. The anomalies of aging clocks involve lower performance of positioning in the GPS applications. We, thus, describe satellite clock behaviors and anomalies induced by aging clocks and their detection technologies to avoid such anomalies.

  • PDF

Attitude Determination GPS/INS Integrated Navigation System with FDI Algorithm for a UAV

  • Oh Sang Heon;Hwang Dong-Hwan;Park Chansik;Lee Sang Jeong;Kim Se Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1529-1543
    • /
    • 2005
  • Recently an unmanned aerial vehicle (UAV) has been widely used for military and civil applications. The role of a navigation system in the UAV is to provide navigation data to the flight control computer (FCC) for guidance and control. Since performance of the FCC is highly reliant on the navigation data, a fault in the navigation system may lead to a disastrous failure of the whole UAV. Therefore, the navigation system should possess a fault detection and isolation (FDI) algorithm. This paper proposes an attitude determination GPS/INS integrated navigation system with an FDI algorithm for a UAV. Hardware for the proposed navigation system has been developed. The developed hardware comprises a commercial inertial measurement unit (IMU) and the integrated navigation package (INP) which includes an attitude determination GPS (ADGPS) receiver and a navigation computer unit (NCU). The navigation algorithm was implemented in a real-time operating system with a multi-tasking structure. To evaluate performance of the proposed navigation system, a flight test has been performed using a small aircraft. The test results show that the proposed navigation system can give accurate navigation results even in a high dynamic environment.

How multipath error influences modernized GNSS ambiguity resolution in urban areas

  • Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.131-136
    • /
    • 2006
  • Commercial uses of GPS have been growing rapidly with applications for aircraft, ship, and land vehicle navigation as well as for surveying and time keeping. The next generation GPS and Japanese QZS (Quasi Zenith Satellite) will provide three different civil signals. Galileo will also provide several types of civil signals. The availability of the third civil frequency has obvious advantages to instantaneous carrier phase accuracy and ambiguity resolution for centimeter level measurements. This paper discusses the effects of additional new civil signals for the high accuracy positioning in urban areas based on simulation using practical raw data. As for constellation, only GPS and GPS+QZS are considered. For positioning, a short distance baseline is assumed in order to disregard atmosphere effects. In this simulation, mask angle and signal conditions were fixed and ambiguity success rates were compared between different triple frequency combination scenarios. The coefficient of reflection was set randomly from 0.05 to 0.5 and the multipath delay was also set randomly from 5-100 m. Visible satellites and signal strength were determined by raw data collected in Tokyo by car. These simulation results have confirmed that the availability of high accuracy positioning will increase in all scenarios if we use GPS+QZS with triple frequencies.

  • PDF