• Title/Summary/Keyword: GMO (genetically modified organisms)

Search Result 29, Processing Time 0.025 seconds

Trends in the global regulation of new breeding techniques and perspective (신육종기술의 규제 전망 및 문제점)

  • Kim, Donghern;Suh, Seung-Man;Kim, Ji-Yeong;Kim, Hae-Yeong
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.305-314
    • /
    • 2018
  • 'New Breeding Techniques (NBTs)' have been one of hot issues, since their future will be affected profoundly by national as well as international regulatory landscapes. In this review, we compare characteristics of NBTs with conventional and genetic modification, and analyze genetically modified organism (GMO) regulatory systems in the context of possible regulation of NBTs. NBTs are very heterogeneous in terms of principles, methodologies, and final products. As Living Modified Organisms (LMO) is defined in the Cartagena Protocol on Biosafety (CPB) as an organism containing novel combination of genetic materials obtained by the use of modern biotechnology, CPB as well as other national legislations locate itself somewhere in the middle between product-based and process-based regulations. It is also noted that jurisdictions with regulatory systems more oriented to product-based one tend to be more productive and decide or may decide to exempt site-directed nucleases-1 from GMO regulation. In this context, Korean legislations are reviewed to clarify the commons and differences in GMO definitions. Act on Transboundary Movement of LMO Act, Food Sanitation Act and Agricultural and Fishery Products Quality Control Act are three major acts to regulate GMOs. It is noted that there are differences in the definition of LMO or GM food/products especially between the LMO Act and the Food Sanitation Act. Such differences may cause conflicts between Acts when policy-decision regarding the regulation of NBTs is made. Therefore, it is necessary to reorganize legislations before policies regarding the regulation of any techniques from biotechnology are made.

World agricultural crop supplies and Korea's food security (세계 농산물 수급과 형질전환작물에 대한 우리나라 정책 방향)

  • Chung, Chang-Ho;Kyung, Kyu-Hang
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.301-308
    • /
    • 2009
  • Higher agricultural commodity prices are a particular concern for food importing countries like Korea that has a very low self-sufficiency ratio. Korean people eat approximately 4.5 million metric tons of rice each year, which is met without a problem by domestic production. The domestic production of corn and soybean which are important raw materials for commercial food processing and livestock feed is only minimal. Demands of corn and soybean in Korea are approximately 7.2 million and 1.3 million metric tons per year, respectively. Since Korean consumers are reluctant to accept biotech (GM) foods, Korean food processors are fighting an up-hill battle in purchasing non-biotech (non- GM) crops which are becoming scarce.

Global trends in regulatory frameworks for animal genome editing in agriculture

  • Dajeong Lim;Inchul Choi
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.247-253
    • /
    • 2023
  • Revolutionary advancements, such as the reduction in DNA sequencing costs and genome editing, have transformed biotechnology, fostering progress in manipulating biomolecules, engineering cells, and computational biology. Agriculture and food production have significantly benefited from tools like high-throughput microarrays, accelerating the selection of desired traits. Genetic engineering, especially utilizing genome editing, facilitates precise alterations in plants and animals, harnessing microbiomes and fostering lab-grown meat production to alleviate environmental pressures. The emergence of new biotechnologies, notably genome editing, underscores the necessity for regulatory frameworks governing LM (living modified) organisms. Global regulations overseeing genetically engineered or genome-edited (GE) organisms, encompassing animals, exhibit considerable diversity. Nonetheless, prevailing international regulatory trends typically exclude genomeedited plants and animals, employing novel biotechnological techniques, from GMO/ LMO classification if they lack foreign genes and originate through natural mutations or traditional breeding programs. This comprehensive review scrutinizes ongoing risk and safety assessment cases, such as genome-edited beef cattle and fish in the USA and Japan. Furthermore, it investigates the limitations of existing regulations related to genome editing in Korea and evaluates newly proposed legislation, offering insights into the future trajectory of regulatory frameworks.

Environmental Monitoring of Herbicide Tolerant Genetically Modified Zoysiagrass (Zoysia japonica) around Confined Field Trials (제초제저항성 유전자변형 들잔디의 시험 격리포장 주변 환경방출 모니터링)

  • Lee, Bumkyu;Park, Kee Woong;Kim, Chang-Gi;Kang, Hong-Gyu;Sun, Hyeon-Jin;Kwon, Yong-Ik;Song, In-Ja;Ryu, Tae-Hun;Lee, Hyo-Yeon
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.305-311
    • /
    • 2014
  • The cultivation area and use of genetically modified (GM) crops have been increased continuously over the world. Seed distribution and transgenes to environmental ecosystem is one of the most important factors in risk assessment and risk management of GM crop. Safe management for the development and commercialization of GM crops is required according to The Act on Transboundary Movements of Living Modified Organisms,etc (LMO Act) in Korea. This study was conducted to setup the environmental monitoring system of GM zoysiagrass (event JG21 and JG21-MS). The monitoring was performed in 4 GMO confined fields, Sungwhan, Ochang, Jeju University and Jeju Namwon. In the result of monitoring, we could not found any gene flow and distribution of GM zoysiagrass in the 3 fields, but one spill of JG21 was found in the Namwon field in 2012. These results suggest that continuous monitoring is necessary to detect the occurrence of GM zoysiagrass for preventing genetic contamination in natural environment.

The application of new breeding technology based on gene editing in pig industry - A review

  • Tu, Ching-Fu;Chuang, Chin-kai;Yang, Tien-Shuh
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.791-803
    • /
    • 2022
  • Genome/gene-editing (GE) techniques, characterized by a low technological barrier, high efficiency, and broad application among organisms, are now being employed not only in medical science but also in agriculture/veterinary science. Different engineered CRISPR/Cas9s have been identified to expand the application of this technology. In pig production, GE is a precise new breeding technology (NBT), and promising outcomes in improving economic traits, such as growth, lean or healthy meat production, animal welfare, and disease resistance, have already been documented and reviewed. These promising achievements in porcine gene editing, including the Myostatin gene knockout (KO) in indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to confer resistance to porcine reproductive and respiratory syndrome virus infection, are described in the present article. Other related approaches for such purposes are also discussed. The current trend of global regulations or legislation for GE organisms is that they are exempted from classification as genetically modified organisms (GMOs) if no exogenes are integrated into the genome, according to product-based and not process-based methods. Moreover, an updated case study in the EU showed that current GMO legislation is not fit for purpose in term of NBTs, which contribute to the objectives of the EU's Green Deal and biodiversity strategies and even meet the United Nations' sustainable development goals for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will be exempted from classification as GMOs, and their global valorization and commercialization can be foreseen.

Societal Implications of Biotechnology and GMOs in Agriculture (생명공학과 GMOs의 농업에 대한 사회적 함의)

  • Lim, Hyung-Baek
    • Journal of Agricultural Extension & Community Development
    • /
    • v.11 no.1
    • /
    • pp.175-189
    • /
    • 2004
  • There are many assertions related to biotechnology and genetically modified organisms(GMOs). Some experts have asserted that GM foods could be dangerous and that there is no reliable evidence that have been demonstrated safe through appropriate tests, and the others asserted these foods are as safe and nutritions as their conventional counterparts. The objectives of this study was to study an societal implications of biotechnology and GMOs in agriculture. To keep the balance in mind the researcher examined not only usefulness but also harmfulness of GMOs, along with the developmental process of biotechnology industry. It was observed that basically, multinational corporations developed GMOs to maximize their profit, and strengthened their control on agriculture and food through GMOs, as observed in alliance among big multinational corporations' food chain cluster and systems. Under the situation, farmers were losing their status as independent producer and were becoming propertied labor for multinational corporation through contract farming. If these trends continuous in the future, multinational corporations will have the control of genetic resources, these may bring about reduction of bio-diversity, thus may lead the opposite direction to eco-friendly agriculture. If multinational corporations' tendency to suppress the latent harmfulness for the profit continuous further, this may lead the degradation phase of farming and agriculture, thus leading negative socio-economic effects as well as culture and religion.

  • PDF

An efficient gene targeting system using homologous recombination in plants (식물에서의 상동재조합을 이용한 효율적인 진타겟팅 시스템)

  • Kwon, Yong-Ik;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.154-160
    • /
    • 2015
  • The plant breeding technology was developed with genetic engineering. Many researchers and breeders have turned from traditional breeding to molecular breeding. Genetically modified organisms (GMO) were developed via molecular breeding technology. Currently, molecular breeding technologies facilitate efficient plant breeding without introducing foreign genes, in virtue by of gene editing technology. Gene targeting (GT) via homologous recombination (HR) is one of the best gene editing methods available to modify specific DNA sequences in genomes. GT utilizes DNA repair pathways. Thus, DNA repair systems are controlled to enhance HR processing. Engineered sequence specific endonucleases were applied to improve GT efficiency. Engineered sequence specific endonucleases like the zinc finger nuclease (ZFN), TAL effector nuclease (TALEN), and CRISPR-Cas9 create DNA double-strand breaks (DSB) that can stimulate HR at a target site. RecQl4, Exo1 and Rad51 are effectors that enhance DSB repair via the HR pathway. This review focuses on recent developments in engineered sequence specific endonucleases and ways to improve the efficiency of GT via HR effectors in plants.

Tolerance: An Ideal Co-Survival Crop Breeding System of Pest and Host in Nature with Reference to Maize

  • Kim, Soon-Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.59-70
    • /
    • 2000
  • In nature, plant diseases, insects and parasites (hereafter called as "pest") must be co-survived. The most common expression of co-survival of a host crop to the pest can be tolerance. With tolerance, chemical uses can be minimized and it protects environment and sustains host productivity and the minimum pest survival. Tolerance can be applicable in all living organisms including crop plants, lifestocks and even human beings. Tolerant system controls pest about 90 to 95% (this pest control system often be called as horizontal or partial resistance), while the use of chemicals or selection of high resistance controls pest 100% (the most expression of this control system is vertical resistance or true resistance). Controlling or eliminating the pests by either chemicals or vertical resistance create new problems in nature and destroy the co-survial balance of pest and host. Controlling pests through tolerance can only permit co-survive of pests and hosts. Tolerance is durable and environmentally-friend. Crop cultivars based on tolerance system are different from those developed by genetically modified organism (GMO) system. The former stabilizes genetic balance of a pest and a host crop in nature while the latter destabilizes the genetic balance due to 100% control. For three decades, the author has implemented the tolerance system in breeding maize cultivars against various pests in both tropical and temperate environments. Parasitic weed Striga species known as the greatest biological problem in agriculture has even been controlled through this system. The final effect of the tolerance can be an integrated genetic pest management (IGPM) without any chemical uses and it makes co-survival of pests in nature.in nature.

  • PDF

Development of glufosinate-tolerant GMO detection markers for food safety management (식품안전관리를 위한 제초제 glufosinate 특이적 GM 작물 검출마커 개발)

  • Song, Minji;Qin, Yang;Cho, Younsung;Park, TaeSung;Lim, Myung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.40-45
    • /
    • 2020
  • Over 500 genetically modified organisms (GMOs) have been developed since 1996, of which nearly 44% have glufosinate herbicide-tolerant traits. Identification of specific markers that can be used to identify herbicide-tolerant traits is challenging as the DNA sequences of the gene(s) of a trait are highly variable depending on the origin of the gene(s), plant species, and developers. To develop specific PCR marker(s) for the detection of the glufosinate-tolerance trait, DNA sequences of several pat or bar genes were compared and a diverse combination of PCR primer sets were examined using certified reference materials or transgenic plants. Based on both the qualitative and quantitative PCR tests, a primer set specific for pat and non-specific for bar was developed. Additionally, a set of markers that can detect both pat and bar was developed, and the quantitative PCR data indicated that the primer pairs were sensitive enough to detect 0.1% of the mixed seed content rate.