• Title/Summary/Keyword: GMM-supervectgor

Search Result 1, Processing Time 0.019 seconds

A Study on SVM-Based Speaker Classification Using GMM-supervector (GMM-supervector를 사용한 SVM 기반 화자분류에 대한 연구)

  • Lee, Kyong-Rok
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1022-1027
    • /
    • 2020
  • In this paper, SVM-based speaker classification is experimented with GMM-supervector. To create a speaker cluster, conventional speaker change detection is performed with the KL distance using the SNR-based weighting function. SVM-based speaker classification consists of two steps. In the first step, SVM-based classification between UBM and speaker models is performed, speaker information is indexed in each cluster, and then grouped by speaker. In the second step, the SVM-based classification between UBM and speaker models is performed by inputting the speaker cluster group. Linear and RBF are applied as kernel functions for SVM-based classification. As a result, in the first step, the case of applying the linear kernel showed better performance than RBF with 148 speaker clusters, MDR 0, FAR 47.3, and ER 50.7. The second step experiment result also showed the best performance with 109 speaker clusters, MDR 1.3, FAR 28.4, and ER 32.1 when the linear kernel was applied.