• Title/Summary/Keyword: GMM Phoneme Recognizer

Search Result 2, Processing Time 0.017 seconds

Multi-layer Speech Processing System for Point-Of-Interest Recognition in the Car Navigation System (차량용 항법장치에서의 관심지 인식을 위한 다단계 음성 처리 시스템)

  • Bhang, Ki-Duck;Kang, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.1
    • /
    • pp.16-25
    • /
    • 2009
  • In the car environment that the first priority is a safety problem, the large vocabulary isolated word recognition system with POI domain is required as the optimal HMI technique. For the telematics terminal with a highly limited processing time and memory capacity, it is impossible to process more than 100,000 words in the terminal by the general speech recognition methods. Therefore, we proposed phoneme recognizer using the phonetic GMM and also PDM Levenshtein distance with multi-layer architecture for the POI recognition of telematics terminal. By the proposed methods, we obtained high performance in the telematics terminal with low speed processing and small memory capacity. we obtained the recognition rate of maximum 94.8% in indoor environment and of maximum 92.4% in the car navigation environments.

  • PDF

Performance Comparison of Feature Parameters and Classifiers for Speech/Music Discrimination (음성/음악 판별을 위한 특징 파라미터와 분류기의 성능비교)

  • Kim Hyung Soon;Kim Su Mi
    • MALSORI
    • /
    • no.46
    • /
    • pp.37-50
    • /
    • 2003
  • In this paper, we evaluate and compare the performance of speech/music discrimination based on various feature parameters and classifiers. As for feature parameters, we consider High Zero Crossing Rate Ratio (HZCRR), Low Short Time Energy Ratio (LSTER), Spectral Flux (SF), Line Spectral Pair (LSP) distance, entropy and dynamism. We also examine three classifiers: k Nearest Neighbor (k-NN), Gaussian Mixure Model (GMM), and Hidden Markov Model (HMM). According to our experiments, LSP distance and phoneme-recognizer-based feature set (entropy and dunamism) show good performance, while performance differences due to different classifiers are not significant. When all the six feature parameters are employed, average speech/music discrimination accuracy up to 96.6% is achieved.

  • PDF