• 제목/요약/키워드: GMM Analysis

검색결과 136건 처리시간 0.023초

LPCA에 기반한 GMM을 이용한 화자 식별 (Speaker Identification Using GMM Based on LPCA)

  • 서창우;이윤정;이기용
    • 음성과학
    • /
    • 제12권2호
    • /
    • pp.171-182
    • /
    • 2005
  • An efficient GMM (Gaussian mixture modeling) method based on LPCA (local principal component analysis) with VQ (vector quantization) for speaker identification is proposed. To reduce the dimension and correlation of the feature vector, this paper proposes a speaker identification method based on principal component analysis. The proposed method firstly partitions the data space into several disjoint regions by VQ, and then performs PCA in each region. Finally, the GMM for the speaker is obtained from the transformed feature vectors in each region. Compared to the conventional GMM method with diagonal covariance matrix, the proposed method requires less storage and complexity while maintaining the same performance requires less storage and shows faster results.

  • PDF

Speaker Verification with the Constraint of Limited Data

  • Kumari, Thyamagondlu Renukamurthy Jayanthi;Jayanna, Haradagere Siddaramaiah
    • Journal of Information Processing Systems
    • /
    • 제14권4호
    • /
    • pp.807-823
    • /
    • 2018
  • Speaker verification system performance depends on the utterance of each speaker. To verify the speaker, important information has to be captured from the utterance. Nowadays under the constraints of limited data, speaker verification has become a challenging task. The testing and training data are in terms of few seconds in limited data. The feature vectors extracted from single frame size and rate (SFSR) analysis is not sufficient for training and testing speakers in speaker verification. This leads to poor speaker modeling during training and may not provide good decision during testing. The problem is to be resolved by increasing feature vectors of training and testing data to the same duration. For that we are using multiple frame size (MFS), multiple frame rate (MFR), and multiple frame size and rate (MFSR) analysis techniques for speaker verification under limited data condition. These analysis techniques relatively extract more feature vector during training and testing and develop improved modeling and testing for limited data. To demonstrate this we have used mel-frequency cepstral coefficients (MFCC) and linear prediction cepstral coefficients (LPCC) as feature. Gaussian mixture model (GMM) and GMM-universal background model (GMM-UBM) are used for modeling the speaker. The database used is NIST-2003. The experimental results indicate that, improved performance of MFS, MFR, and MFSR analysis radically better compared with SFSR analysis. The experimental results show that LPCC based MFSR analysis perform better compared to other analysis techniques and feature extraction techniques.

3GPP2 SMV의 실시간 음성/음악 분류 성능 향상을 위한 Gaussian Mixture Model의 적용 (Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Based on GMM)

  • 송지현;이계환;장준혁
    • 한국음향학회지
    • /
    • 제26권8호
    • /
    • pp.390-396
    • /
    • 2007
  • 본 논문에서는 음성 인식과 음악 인식에서 뛰어난 성능을 보이는 Expectation-Maximization(EM) 알고리즘 기반의 패턴인식기법인 가우시안 혼합모델(Gaussian Mixture Model, GMM)을 이용하여 기존의 3GPP2 Selectable Mode Vocoder(SMV)의 실시간 음성/음악 분류 성능을 향상 시키는 방법을 제안한다 SMV의 음성/음악 실시간 분류 알고리즘에서 사용된 특징벡터와 분류방법을 분석하고, 이를 기반으로 분류성능향상을 위해 패턴인식 알고리즘인 GMM을 도입한다. 구체적으로, SMV의 음성/음악 분류알고리즘에서 사용되어진 특징벡터만을 선택적으로 사용하여 효과적인 GMM을 구성한 실시간 분류기법이 제시되었다. SMV의 음성/음악 분류에 적용한 GMM의 성능 평가를 위해 SMV 원래의 분류알고리즘과 비교하였으며, 다양한 음악장르에 대해 시스템의 성능을 평가한 결과 GMM을 이용하였을 때 기존의 SMV의 방법보다 우수한 음성/음악 분류 성능을 보였다.

생체기반 GMM Supervector Kernel을 이용한 운전자검증 기술 (Driver Verification System Using Biometrical GMM Supervector Kernel)

  • 김형국
    • 한국ITS학회 논문지
    • /
    • 제9권3호
    • /
    • pp.67-72
    • /
    • 2010
  • 본 논문에서는 음성과 얼굴 정보를 분석하여 자동차환경에서 운전자를 검증하는 기술을 소개한다. 음성정보를 이용한 화자검증을 위해서는 잘 알려진 Mel-scale Frequency Cepstral Coefficients(MFCCs)를 음성 특징으로 사용하였으며, 동영상을 이용한 얼굴검증에 대해서는 AdaBoost를 이용하여 검출된 얼굴 영역에 대해 주성분 분석을 수행하여 데이터의 크기가 현저히 줄어든 특징벡터를 추출하였다. 기존의 화자검증 방식에 비해 본 논문에서는 추출된 음성 및 얼굴 특징들을 Gaussian Mixture Models(GMM)-Supervector기반의 Support Vector Machine(SVM)커넬 방식에 적용하여 운전자의 음성과 얼굴을 효과적으로 검증하는 방식을 제안하였다. 실험결과 제안한 방법은 단순한 GMM 방식이나 SVM 방식보다 운전자 검증성능을 향상시킴을 알 수 있었다.

Detection of Pathological Voice Using Linear Discriminant Analysis

  • Lee, Ji-Yeoun;Jeong, Sang-Bae;Choi, Hong-Shik;Hahn, Min-Soo
    • 대한음성학회지:말소리
    • /
    • 제64호
    • /
    • pp.77-88
    • /
    • 2007
  • Nowadays, mel-frequency cesptral coefficients (MFCCs) and Gaussian mixture models (GMMs) are used for the pathological voice detection. This paper suggests a method to improve the performance of the pathological/normal voice classification based on the MFCC-based GMM. We analyze the characteristics of the mel frequency-based filterbank energies using the fisher discriminant ratio (FDR). And the feature vectors through the linear discriminant analysis (LDA) transformation of the filterbank energies (FBE) and the MFCCs are implemented. An accuracy is measured by the GMM classifier. This paper shows that the FBE LDA-based GMM is a sufficiently distinct method for the pathological/normal voice classification, with a 96.6% classification performance rate. The proposed method shows better performance than the MFCC-based GMM with noticeable improvement of 54.05% in terms of error reduction.

  • PDF

강인한 VQ-PCA에 기반한 효율적인 화자 식별 (Efficient Speaker Identification based on Robust VQ-PCA)

  • 이기용
    • 인터넷정보학회논문지
    • /
    • 제5권3호
    • /
    • pp.57-62
    • /
    • 2004
  • 본 논문에서는, 효율적인 화자 식별을 위하여 강인한 벡터 양자화 주성분 분석을 제안하였다. 제안된 방법은 화자 식별에서 특징벡터의 학습을 위한 고차원(high dimension) 문제와 이상치(Outlier)에 대한 문제를 해결 하기위하여 제안 되었다. 먼저, 제안된 방법은 M-추정을 이용하여 강인한 벡터 양자화(Vector Quantization : VQ) 에 의한 몇 개의 분리된 영역으로 데이터 공간을 나눈다. 분리된 자 영역에서 공분산 행렬로부터 강인한 주성분 분석(Principal Component Analysis)이 얻어지게 된다. 마지막으로 각 영역에서 강인한 PCA에 의하여 줄어든 차원을 갖는 변환된 특징 벡터로부터 화자의 가우시안 혼합 모델(Gaussian Mixture Model : GMM)을 구한다. 제안된 방법은 같은 성능하에서 대각 공분산 행렬을 갖는 전형적인 GMM방법과 비교할 때 더빠른 결과를 얻었으며, 데이터의 저장공간을 줄일 수 있었을 뿐 아니라, 이상치가 존재할 경우에 더욱 강인하였다.

  • PDF

차량검출 GMM 2.0을 적용한 도로 위의 차량 검출 시스템 구축 (On-Road Car Detection System Using VD-GMM 2.0)

  • 이옥민;원인수;이상민;권장우
    • 한국통신학회논문지
    • /
    • 제40권11호
    • /
    • pp.2291-2297
    • /
    • 2015
  • 본 연구에서는 레이더 검지 시스템과 통합하여 적용하기 위해 도로 위를 이동하는 자동차의 영상을 입력 받아 자동차를 검출하는 방법을 제안한다. 입력 영상의 제약조건이 있다. 도로 위에서 아래 방향을 비스듬히 내려 보는 고정된 시야를 가져야한다는 점이다. 주어진 영상 중 도로 영역만을 이용하기 위해 도로 영역을 관심영역으로 검출해 적용한다. 서론에서는 도로 영역 내에서 차량 검출을 위해 사용한 모션 히스토리 이미지 추출 방법, SIFT(Scale-Invariant Feature Transform) 알고리즘, 히스토그램 분석 등을 적용한 실험결과와 이에 대한 한계점을 제시했다. 이를 해결하기 위해서 가우시안 혼합 모델(GMM, Gaussian Mixture Model)의 응용을 제안한다. 가우시안 혼합 모델 알고리즘을 응용한 차량 검출 GMM(VDGMM, Vehicle Detection GMM)과 이를 차량 검출에 더 최적화한 차량 검출 GMM 2.0을 설명하고, 차량 검출 GMM 2.0을 적용한 실험결과 및 결론을 제시한다. 도로 영역 검출 없이 GMM을 적용한 결과는 정확율, 재현율, F1이 각각 9%, 53%, 15%이었고, 도로 영역 검출 후 차량 검출 GMM 2.0을 적용한 결과는 각각 85%, 77%, 80%로 많은 차이를 보였다.

3GPP2 SMV의 실시간 유/무성음 분류 성능 향상을 위한 Gaussian Mixture Model 기반 연구 (Enhancement Voiced/Unvoiced Sounds Classification for 3GPP2 SMV Employing GMM)

  • 송지현;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제45권5호
    • /
    • pp.111-117
    • /
    • 2008
  • 본 논문에서는 패턴 인식에서 우수한 성능을 보이는 가우시안 혼합모델 (Gaussian mixture model, GMM)을 이용하여 비정상적인 잡음환경에서 3GPP2 selectable mode vocoder (SMV)의 유/무성음 분류 알고리즘 성능 향상을 위한 방법을 제안한다. 기존의 SMV에 대해서 분석하고, 이론 기반으로 유/무성음 분류 알고리즘에서 우수한 성능을 보여주는 특징 벡터를 선택하여 GMM의 입력벡터로 효과적으로 이용한다 다양한 잡음환경에서 시스템의 성능을 평가한 결과 GMM을 이용한 제안된 방법이 기존의 SMV의 방법보다 우수한 유/무성음 분류 성능을 보였다.

A nonlinear transformation methods for GMM to improve over-smoothing effect

  • Chae, Yi Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.182-187
    • /
    • 2014
  • We propose nonlinear GMM-based transformation functions in an attempt to deal with the over-smoothing effects of linear transformation for voice processing. The proposed methods adopt RBF networks as a local transformation function to overcome the drawbacks of global nonlinear transformation functions. In order to obtain high-quality modifications of speech signals, our voice conversion is implemented using the Harmonic plus Noise Model analysis/synthesis framework. Experimental results are reported on the English corpus, MOCHA-TIMIT.

화자식별을 위한 강인한 주성분 분석 가우시안 혼합 모델 (RPCA-GMM for Speaker Identification)

  • 이윤정;서창우;강상기;이기용
    • 한국음향학회지
    • /
    • 제22권7호
    • /
    • pp.519-527
    • /
    • 2003
  • 음성신호는 주변 잡음과 화자의 발성 패턴 변화, 음성 검출 오류에서 생기는 이상치(outlier)에 많은 영향을 받고 있다. 이러한 음성 신호를 이용하여 화자인식에 이용할 경우 인식률이 저하된다. 본 논문에서는 화자식별 (speaker identification)에서 학습 특징 벡터의 이상치와 고차원 문제를 해결하기 위하여 M-추정을 이용한 강인한 주성분 분석 가우시안 혼합모델 (Robust Principal Component Analysis-Gaussian Mixture Model)방법을 제안하였다. 제안된 방법은 먼저, 특징 벡터에 이상치가 존재할 경우 M-추정에 의하여 강인한 공분산 행렬을 재추정하여 얻어진 고유벡터로부터 변환 행렬을 구하여 감소된 차원을 갖는 새로운 특징벡터를 구한다. 여기에서 얻은 선형변환된 특징벡터로부터 화자의 가우시안 혼합 모델을 구한다. 제안된 방법의 성능을 검증하기 위하여 화자식별 실험을 하였다. 실험은 전형적인 가우시안 혼합 모델 방법과 주성분 분석법, 제안된 방법을 비교 분석하였다. 이상치가 2%씩 증가할 때마다 가우시안 혼합모델 방법과 주성분 분석법은 각각 0.65%, 0.55%씩 화자식별 성능이 저하되었지만, 제안된 방법은 0.03%정도 감소하였으므로 이상치에 더욱 강인함을 알 수 있다.