• Title/Summary/Keyword: GMAW(Gas Metal Arc Welding) fracture toughness

Search Result 3, Processing Time 0.019 seconds

Effect of Heat Input on Girth Welds Properties of High Strain Steel Pipe (입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향)

  • Lee, Jin-Woo;Song, Woo-Hyun;Seo, Dong-Han;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.25-30
    • /
    • 2009
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.

Effect of Heat Input on Girth welds properties of High strain steel pipe (입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향)

  • Lee, Jin-Woo;Song, Woo-Hyun;Seo, Dong-Han;Lee, Jong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.71-71
    • /
    • 2010
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.

  • PDF

Mechanical Properties and Microstructures in WC-12%Co/Low Carbon Steel Metal Matrix Composites(MMC) Welding Overlay

  • 임희식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.50-56
    • /
    • 2003
  • Metal matrix composites(MMC) consist of metal matrix into which is distributed a second solid phase. The normal intension is to develop a material with superior mechanical properties (for example increased toughness, stiffness and wear resistance) compared to those inherent in the matrix component. In this study, WC-12%Co/low carbon steel MMC overlays have been prepared by Gas Metal Arc Welding(GMAW) according to feeding rate of WC-12%Co grit. The macro and microstructures were examined using optical microscopy (OM) and scanning electron microscopy(SEM) each other. The characteristics of hardness and wear resistance have been investigated. WC-12%Co/low carbon steel MMC overlays which have been taken good beads without porosity and cracks were manufactured by method of GMAW. Matrix of overlayed surface was seen as fish bone and faceted dendrite structures. It was known that structures were iron tungsten carbides, Fe$_{6}$W$_{6}$C which have been occurred by melting of WC-12%Co grits. After MMC had been tested by block-roll wear test it was known that WC-12%Co/low carbon steel MMC has a excellent wear resistance by exiting Fe6w6c and WC-12%Co grit. The consequence was that region of overlay with Fe$_{6}$W$_{6}$C phase has been showed a model of adhesive wear, but region of overlay with WC-12%Co grit was restrained as a result of mechanism that wear of WC-12%Co grit is not adhesive but fracture.racture.