• Title/Summary/Keyword: GM canola

Search Result 10, Processing Time 0.017 seconds

Multiplex PCR Detection of the GT73, MS8xRF3, and T45 Varieties of GM Canola

  • Kim, Jae-Hwan;Kim, Tae-Woon;Lee, Woo-Young;Park, Sun-Hee;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.104-109
    • /
    • 2007
  • A multiplex polymerase chain reaction (PCR) method was developed to simultaneously detect three varieties of genetically modified (GM) canola. The construct-specific primers were used to distinguish the following three varieties of GM canola; GT73, MS8xRF3, and T45, using multiplex PCR. The FatA (fatty acyl-ACP thioesterase) gene was used as an endogenous canola reference gene in the PCR detection. The primer pair Canendo-FIR containing a 105 bp amplicon was used to amplify the FatA gene and no amplified product was observed in any of the 15 different plants used as templates. The GT73-KHUF1/R1 primer recognized the 3'-flanking region of GT73, resulting in an amplicon of 125 bp. The Barstar-F1/MS8xRF3-R primer recognized the junction region of bars tar and the NOS terminator introduced into MS8xRF3, resulting in a 162 bp amplicon, and the T45-F2/R2 primer recognized the junction region of PAT and the 35S terminator introduced into T45, resulting in an amplicon of 186 bp. This multiplex PCR allowed for the detection of construct-specific targets in a genomic DNA mixture of up to 1% GM canola containing GT73, MS8xRF3, and T45.

Quantification of Genetically Modified Canola GT73 Using TaqMan Real-Time PCR

  • Kim, Jae-Hwan;Song, Hee-Sung;Kim, Dong-Hern;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1778-1783
    • /
    • 2006
  • Event-specific PCR detection methods are the primary trend in genetically modified (GM) plant detection owing to their high specificity based on the flanking sequence of the exogenous integrant. Therefore, this study describes a real-time PCR system for event-specific GM canola GT73, consisting of a set of primers, TaqMan probe, and single target standard plasmid. For the specific detection of GT73 canola, the 3'-integration junction sequence between the host plant DNA and the integrated specific border was targeted. To validate the proposed method, test samples of 0, 1, 3, 5, and 10% GT73 canola were quantified. The method was also assayed with 15 different plants, and no amplification signal was observed in a real-time PCR assay with any of the species tested, other than GT73 canola.

Current status on the development of detection methods for genetically modified plants (유전자변형식물의 검정기술 개발 현황)

  • Kim, Jae-Hwan;Kim, Young-Rok;Kim, Hae-Yeong
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • Since the first commercial GM plant, the FlavrSavr tomato, authorized in 1994, more than 140 GM plants were authorized for marketing globally. For the authorization and labelling of GM plants, the detection methods for genes introduced and proteins expressed in GM plants were developed qualitatively and quantitatively. This review presented the detection methods, conventional PCR, multiplex PCR and real-time PCR, for soybean, maize, canola and cotton as the dominant GM plants. Also, microarray assay and nanotechnology as new approaches for detection methods for GM plants were investigated.

A survey of the genetic components introduced into approved GM crops (국내외 상업화 GM 작물의 유전요소 분석)

  • Woo, Hee-Jong;Chung, Chan-Mi;Shin, Kong-Sik;Ji, Hyeon-So;Lee, Ki-Jong;Suh, Seok-Chul;Kweon, Soon-Jong;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.106-114
    • /
    • 2009
  • Genetic components introduced into approved GM crops are a key subject for safety assessment and provide a basis for the development of detection methods for GM crops. In order to understand the genetic components in approved GM crops comprehensively, we screened the genetic vector maps of GM crops that had been approved for commercialization around the world. A total of 64 varieties from 5 major GM crop species (maize, canola, cotton, soybean, and tomato) were subjected to analysis. The genetic components included genes, promoters, terminators, and selection marker. This survey may be useful for researchers who develop GM crops and methods for detecting GM crops.

The importation of genetically modified crops and its environmental impacts in Korea

  • Han, Sung Min;Kim, Young Tae;Won, Ok Jae;Choi, Kyung Hwa;Rho, Young Hee;Park, Kee Woong
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.215-220
    • /
    • 2016
  • The global cultivation area of genetically modified crops (GM crops) has been increasing every year. Cultivation of GM crops is not only beneficial to the economy but also has positive effects on the environment in decreasing the use of agrochemicals, chemical fertilizers, and agricultural machinery. However, there have been controversies about the admixture of GM crops and non-GM crops and the unintentional release of GM crops to the environment. Especially in Korea, where consumption of agricultural products is import-dependent, the economic importance of GM crops has been a significant issue. The Act on import and distribution of GM crops was established in 2001 to start the management of GM crops in Korea. Recently, the imported amount of GM crops to Korea has reached over 10 million tons and is increasing very rapidly; consequently, the potential environmental impact of GM crops is becoming a big issue in Korea. In Japan, the discovery of imported GM canola plants around ports in 2005 raised awareness of the unintentional release of GM crops. In Korea, GM maize plants were also found in port and feed factory surroundings from 2005 to 2007. It is now necessary to monitor imported GM crops by tracing distribution, transport process for practical environmental risk assessment. Possible gene transfer from GM crops to non-GM crops should also be investigated in the cultivation area and the surroundings as well.

A Comparison Between the Agricultural Traits of GM and Non-GM Rice in Drought Stress and Non-stress Conditions (건조 스트레스 환경과 스트레스가 없는 환경에서 GM벼와 non-GM벼의 농업 형질 비교)

  • Racheal, Nafula;Park, Jae-Ryoung;Jeon, Dong Won;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.411-419
    • /
    • 2020
  • The development of GM crops has gained significant economic importance, and the number of countries cultivating commercial GM crops has continuously increased since the 1960s. Globally, the area given to cultivating GM soybean, maize, cotton, and canola alone had reached 114 million hectares by 2007. Although the economic importance of cultivating and commercializing GM crops has increased, there is still a need to assess their agricultural traits in comparison to non-GM produce. This study evaluated the agricultural traits of GM rice containing the drought-tolerant gene CaMsrB2 and standard rice to investigate any unintended effects of genetic engineering. The GM and non-GM rice were compared in terms of various agricultural traits in a drought greenhouse and an irrigated paddy field. There was no statistical difference in the field-grown crops, but there was a statistically significant difference in both tiller number and yield in the greenhouse. These results therefore suggest that GM rice lines containing the CaMsrB2 gene are superior in performance to non-GM rice in drought stress conditions and could be grown in drought-prone areas where drought intolerant rice may not be able to grow.

Current Status of GM Crop Discrimination Technology Using Spectroscopy (분광분석법을 이용한 형질전환 작물 판별 기술 현황)

  • Sohn, Soo-In;Oh, Young-Ju;Cho, Woo-Suk;Cho, Yoonsung;Shin, Eun-Kyoung;Kang, Hyeon-jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.263-272
    • /
    • 2020
  • BACKGROUND: This paper describes the successful discrimination of GM crops from the respective wild type (WT) controls using spectroscopy and chemometric analysis. Despite the many benefits that GM crops, their development has raised concerns, particularly about their potential negative effects on food production and the environment. From this point of view, the introduction of GM crops into the market requires the development of rapid and accurate identification technologies to ensure consumer safety. METHODS AND RESULTS: The development of a GM crop discrimination model using spectroscopy involved the pre-processing of the collected spectral information, the selection of a discriminant model, and the verification of errors. Examples of GM versus WT discrimination using spectroscopy are available for soybeans, tomatoes, corn, sugarcane, soybean oil, canola oil, rice, and wheat. Here, we found that not only discrimination but also cultivar grouping was possible. CONCLUSION: Since for the determination of GM crop there is no pre-defined pre-processing method or calibration model, it is extremely important to select the appropriate ones to increase the accuracy in a case-by-case basis.

Characteristics of canola biodiesel fuel blended with diesel on the combustion and exhaust gas emissions in a compression ignition diesel engine (압축착화 디젤기관의 연소 및 배기가스에 대한 카롤라 바이오디젤 혼합 연료의 특성)

  • Yoon, Sam Ki;Kim, Min Soo;Choi, Nag Jung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1081-1086
    • /
    • 2014
  • An experimental study was performed in order to compare with the case of using pure diesel the characteristics of combustion pressure and exhaust emissions when the engine speed was changed in a CRDI 4-cylinder diesel engine using biodiesel( Canola oil) blended and pure diesel fuel. As a results, the combustion pressure was decreased with increasing biodiesel blended rate when engine speed was 1,000, 1,500, 2000(rpm). but the combustion pressure of the engine speed 2,500rpm was increased with increasing biodiesel blended rate. The emission results show, that CO was decreased with increasing biodiesel blended rate and engine speed. The emission of $CO_2$, NOx, were increased with increasing biodiesel blended rate and engine speed.

Safety evaluation and approval status of genetically modified foods in Korea (국내 유전자변형식품 안전성 심사 규정 및 승인현황)

  • Kang, Yun-Sook
    • Food Science and Industry
    • /
    • v.52 no.2
    • /
    • pp.130-139
    • /
    • 2019
  • Safety of genetically modified foods (GM foods) in Korea is evaluated according to "Food Sanitation Act" and "Regulation on safety evaluation for GM foods" based on the concept of substantial equivalence. In which cases a person who imports, develops or manufactures GM foods for the purpose of eating imports GM foods for the first time, he/she shall undergo a safety evaluation of the relevant foods, etc. by Ministry of Food and Drug Safety (MFDS). And in which cases ten years have elapsed since GM foods underwent safety evaluation, they shall be re-evaluated for their safety. As of April 2019, a total of 199 events have been approved by MFDS and they are 169 events of GM crops including soybean (29), maize (87), cotton (29), canola (14), sugar beet (1), potato (4), alfalfa (5), 6 events of GM microorganisms (GMM) and 24 events of GM food additives originated from GMM.

Genetic information analysis for the development of an event-specific PCR marker for herbicide tolerance LM crops

  • Do Yu, Kang;Myung Ho, Lim;Soo In, Sohn;Hyun Jung, Kang;Tae Sung, Park
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.1051-1065
    • /
    • 2021
  • Recent times have seen sustained increases in genetically modified (GM) crops not only for cultivation but also for the utility of food and feed worldwide. Domestically, commercial planting and the accidental or unintentional release of living modified (LM) crops into the environment are not approved. Many detection methods had been devised in an effort to realize effective management of the safety of agricultural genetic resources. In order to develop event-specific polymerase chain reaction (PCR) markers for LM crops, we analyzed the genetic information of LM crops. Genetic components introduced into crops are of key importance to provide a basis for the development of detection methods for LM crops. To this end, a total of 18 varieties from four major LM crop species (maize, canola, cotton, and soybeans) were subjected to an analysis. The genetic components included introduced genes, promoters, terminators and selection markers. Thus, if proper monitoring techniques and single or multiplex PCR strategies that rely on selection markers can be established, such an accomplishment can be regarded as a feasible solution for the safe management of staple crop resources.