• Title/Summary/Keyword: GM Rice

Search Result 115, Processing Time 0.038 seconds

Analysis of risk management system of GM crops in China for the development of global GM crops (글로벌 GM 작물 실용화를 위한 중국의 GM 작물 안전관리제도 분석)

  • Lee, Shin-Woo;Cho, Kwang-Soo;Wang, Zhi;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.127-132
    • /
    • 2012
  • We analysed the current status of development of GM crops and national biosafety framework including legislation-related agricultural GMO in China to provide the policy for the development of global GM crops in Korea. In China, several GM crops including cotton, petunia, tomato, sweet pepper, poplar, and papaya have been approved for commercialization and they have been cultivated at more than 4 million ha. In addition, GM rice and GM maize have also obtained approval for productive testing in 2009. China will be the first country to approve GM rice for commercialization. Prior to commercialization in China, all GM crops must be approved by government authority for biosafety assessment specified by national legislation including restricted field testing, enlarged field testing, productive testing and safety certificate. According to China's legislation, agricultural GMOs have been classified by research and testing, production and processing. All GMOs must go through 3 steps of field testing (restricted, enlarged and productive). Prior to conducting each field testing, it has to be approved by government authority. It is assumed that at least one to two years will be taken for each step of field testing (total 4 to 8 years to obtain the final safety certificate) along with a large amount of budget.

Molecular and Cultivation-Based Characterization of Bacterial Community Structure in Rice Field Soil

  • KIM MI-SOON;AHN JAE-HYUNG;JUNG MEE-KUM;YU JI-HYEON;JOO DONGHUN;KIM MIN-CHEOL;SHIN HYE-CHUL;KIM TAESUNG;RYU TAE-HUN;KWEON SOON-JONG;KIM TAESAN;KIM DONG-HERN;KA JONG-OK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1087-1093
    • /
    • 2005
  • The population diversity and seasonal changes of bacterial communities in rice soils were monitored using both culture-dependent approaches and molecular methods. The rice field plot consisted of twelve subplots planted with two genetically-modified (GM) rice and two non-GM rice plants in three replicates. The DGGE analysis revealed that the bacterial community structures of the twelve subplot soils were quite similar to each other in a given month, indicating that there were no significant differences in the structure of the soil microbial populations between GM rice and non-GM rice during the experiment. However, the DGGE profiles of June soil after a sudden flooding were quite different from those of the other months. The June profiles exhibited a few intense DNA bands, compared with the others, indicating that flooding of rice field stimulated selective growth of some indigenous microorganisms. Phylogenetic analysis of l6S rDNA sequences from cultivated isolates showed that, while the isolates obtained from April soil before flooding were relatively evenly distributed among diverse genera such as Arthrobacter, Streptomyces, Terrabacter, and Bacillus/Paenibacillus, those from June soil after flooding mostly belonged to the Arthrobacter species. Phylogenetic analysis of 16S rDNA sequences obtained from the soil by cloning showed that April, August, and October had more diverse microorganisms than June. The results of this study indicated that flooding of rice fields gave a significant impact on the indigenous microbial community structure; however, the initial structure was gradually recovered over time after a sudden flooding.

Analysis of junction site between T-DNA and plant genome in Lissorhoptrus oryzophilus resistance GM rice (벼물바구미 (Lissorhoptrus oryzophilus) 내충성 GM 벼에서 T-DNA와 게놈의 인접부위 분석)

  • Lee, Jin-Hyoung;Shin, Kong-Sik;Suh, Seok-Cheol;Rhim, Seong-Lyul;Lim, Myung-Ho;Woo, Hee-Jong;Qin, Yang;Kweon, Soon-Jong;Park, Soon-Ki
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.127-133
    • /
    • 2014
  • Four transgenic rice lines harboring insect-resistant gene cry3A showed ideal field performances characterized by high considerable resistance to rice water weevil (Lissorhoptrus oryzophilus Kuschel). In this study, we estimated the insertion number of foreign genes, and analyzed the flanking sequences of T-DNAs in rice genome. As a result, T-DNA of BT12R1 line was inserted in exon region of rice chromosome 10. Two copies of T-DNAs were inserted in line BT12R2. BT12R3 line was analyzed at only left border flanking sequence. BT12R4 line was confirmed one copy of foreign gene insertion at the position 24,516,607 ~ 24,516,636 of rice chromosome 5, accompanied by a deletion of 30 bp known genomic sequences. This intergenic position was confirmed none of expressed gene and any deletion/addition of T-DNA sequence. In conclusion, these molecular data of rice water weevil resistant Bt rice would be used to conduct the biosafety and environment risk assessment for GM crop commercialization.

Safety assessment of the AtCYP78A7 protein expressed in genetically modified rice tolerant to abiotic stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Park, Jung-Ho;Yoon, Won Kee;Kim, Ho Bang;Kim, Chang-Gi
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.248-257
    • /
    • 2018
  • Overexpression of AtCYP78A7, a gene encoding a cytochrome P450 protein, has been reported to improve tolerance to drought stress in genetically modified (GM) rice (Oryza sativa L.). The aim of this study was to evaluate the potential allergenicity and acute oral toxicity of the AtCYP78A7 protein expressed in GM rice. Bioinformatics analysis of the amino acid sequence of AtCYP78A7 did not identify any similarities with any known allergens or toxins. It showed that no known allergen had more than a 35% amino acid sequence homology with the AtCYP78A7 protein over an 80 amino acid window or more than 8 consecutive identical amino acids. The gene encoding the AtCYP78A7 protein was cloned in the pGEX-4T-1 vector and expressed in E. coli. Then, the AtCYP78A7 protein was purified and analyzed for acute oral toxicity. The AtCYP78A7 protein was fed at a dose of 2,000 mg/kg body weight in mice, and the changes in mortalities, clinical findings, and body weight were monitored for 14 days after the dosing. Necropsy was carried out on day 14. The protein did not cause any adverse effects when it was orally administered to mice at 2000 mg/kg body weight. These results indicate that the AtCYP78A7 protein expressed in GM rice would not be a potential allergen or toxin.

Accumulation and Inhibitory Effects of Microcystin on the Growth of Rice and Broccoli

  • Maejima, Kazuhiko;Muraoka, Terukazu;Park, Ho-Dong
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.spc
    • /
    • pp.19-30
    • /
    • 2014
  • Microcystins (MCs) produced by cyanobacteria are severe hepatotoxins for mammalian and protein phosphatase inhibitors. Irrigation water for grain and vegetables is often contaminated with cyanobacteria and microcystin during warm seasons. We assessed the effects of various concentrations (0, 0.01 to $10{\mu}gmL^{-1}$) of microcystin-LR (MC-LR) and microcystin-RR (MC-RR) exposure on Oryza sativa (rice) and Brassica oleraces var. italica (broccoli). The $EC_{50}$ of leaves and roots of rice was 0.9 and $1.1{\mu}gMC-LRmL^{-1}$, respectively. The no observed effect level (NOEL) of rice was less than $0.1{\mu}gmL^{-1}$ ($100{\mu}gL^{-1}$). The $EC_{50}$ of the stems and roots of broccoli was 8.7 and $7.2{\mu}gMC-RRmL^{-1}$, respectively. There was no difference in the germination rate of broccoli among microcystin-RR concentrations. After exposure to 0, 0.01 to $10{\mu}gmL^{-1}$ MC-RR for seven days, 14, 89 and 154 ng mg-1 (dry weight) MC-RR accumulated in B. oleracea. These $EC_{50}$ values showed that microcystin-LR and -RR affected the growth of rice and broccoli. These findings suggest that MC is carried into terrestrial ecosystems via irrigation, and that the biota of higher ecological niches can be influenced by MC through bioaccumulation. Therefore, a guideline for MC concentrations in irrigation water should be set using the NOEL.

Evaluation and Assessment of Biosafety for Bacillus thuringiensis (Bt)-transgenic Rice: Responses of Daphnia magna Fed on Bt-transgenic Rice Variety (해충저항성 Bacillus thuringiensis (Bt) 벼의 환경위해성 평가: 해충저항성 Bt벼가 물벼룩(Daphnia magna)에 미치는 영향)

  • Oh, Sung-Dug;Shin, Hye-Chul;Sohn, Soo-In;Lee, Ki-Jong;Kim, Hyo-Jin;Ryu, Tae-Hun;Lee, Jang-Yong;Park, Beom-Seok;Kweon, Soon-Jong;Suh, Seok-Cheol;Park, Jong-Sug
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.296-302
    • /
    • 2011
  • Insect-resistant transgenic rice was developed by inserting the mCry1Ac1 a modified gene from the soil bacterium Bacillus thuringiensis (Bt). For biosafety assessment, we studied the effects on survival of cantor Daphnia magna, a commonly used as a model organism in ecotoxicological studies. D. magna fed on Bt rice and its near non-genetically modified (GM) counterparts (Nakdong) grown in the same environment (100% ground rice suspension). The Bt rice was comfirmed to have the insertion of T-DNA and protein expression by the polymerase chain reaction and ELISA analysis. Feeding study showed similar cumulative immobility and abnormal response of D. magna between Bt rice and non-GM counterparts. 48 h-$EC_{50}$ values of Bt rice and non-GM rice showed 4,429 and 2,889 mg/L respectively. The rice no observed effect concentration (NOEC) values for D. magna was suggested 1,000 mg/L. We conclude that the tested Bt-rice and Nakdong similar cumulative immobility for D. magna the widely used model organism. We found out that there is strong possibility that the growth of Bt rice didn't affect to non-target insects.

Combined application of oil cake and rice bran reduced the number of weeds and increased the yield of paddy rice in a paddy field incorporated with white clover

  • Sugimoto, Hideki;Araki, Takuya;Morokuma, Masahiro;Hossain, Shaikh Tanveer
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.357-357
    • /
    • 2017
  • The combined application of oil cake and rice bran into the soil surface was found useful for weed control in our previous pot study. The present study was undertaken to evaluate the performance of white clover (Trifolium repens L.) while incorporated in the paddy field and effects of combined fertilizer on weed control and rice yield. A plot was divided into two parts i.e. white clover incorporated and not incorporated. The nitrogen content of the incorporated white clover was $12.5gm^{-2}$. Chemical fertilizer and combined fertilizer plots were compared with non-fertilizer conditions. The mixed ratio of combined fertilizer was oil cake 1.35 and rice bran 1.0. Combined fertilizer was applied to the soil surface, and chemical fertilizer was mixed in the soil. Nitrogen application rate was $8gm^{-2}$ for any fertilizer. The weed numbers were significantly reduced in the white clover plot irrespective of application condition both at heading and harvest time. Also, weed control ability was improved by the use of combined fertilizer. In the not incorporated plot, the number of weeds was suppressed about 90% by applying combined fertilizer. The rice yield was markedly increased by the incorporation with white clover under all fertilization conditions. Contribution rates of increased rice yield by white clover and combined fertilizer were about 55% and about 25%, respectively. The rice yield was increased by the incorporation with white clover, and the number of weeds remarkably decreased as well. Also, these effects were improved due to combined application of oil cake and rice bran.

  • PDF

Molecular biological analysis of Bt-transgenic (Bt-9) rice and its effect on Daphnia magna feeding

  • Oh, Sung-Dug;Yun, Doh-Won;Chang, Ancheol;Lee, Yu-jin;Lim, Myung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.113-124
    • /
    • 2019
  • Insect-resistant transgenic (Bt-9) rice was generated by inserting mCry1Ac1, a modified gene from the soil bacterium Bacillus thuringiensis, into the genome of a conventional variety of rice (Ilmi). With regard to potential problems such as safety, an evaluation of non-target organisms is necessary as an essential element of an environmental risk assessment of genetically modified (GM) crops. We studied the effects of the Bt-9 rice on the survival of cantor Daphnia magna, a commonly used model organism in ecotoxicological studies. D. magna fed on the Bt-transgenic rice (Bt-9) and its near non-GM counterparts (Ilmi) grown in the same environment (a 100% ground rice suspension). The Bt-9 rice was confirmed to have the inserted T-DNA and protein expression evident by the PCR and ELISA analyses. The feeding study showed a similar cumulative immobility and abnormal response of the Daphnia magna between the Bt-9 rice and Ilmi. Additionally, the 48 h-EC50 values of the Bt-9 and Ilmi rice were 4,400 mg/L (95% confidence limits: 3861.01 - 5015.01 mg/L) and 5,564 mg/L (95% confidence limits: 4780.03 - 6476.93 mg/L), respectively. The rice NOEC (No observed effect concentration) value for D. magna was suggested to be 1,620 mg/L. We conclude that the tested Bt-9 and Ilmi have a similar cumulative immobility for D. magna, a widely used model organism, and the growth of Bt-9 did not affect non-target insects.

Effects of Hydrocolloids on Quality Characteristics of Bread with Rice Flour (쌀을 첨가하여 제조한 식빵의 품질 특성에 미치는 Hydrocolloids의 영향)

  • Kim, Yang-Hoon;Lee, Jeong-Hoon;Lee, Si-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1324-1332
    • /
    • 2016
  • The effects of different hydrocolloids, including hydroxypropyl methylcellulose (HPMC), xanthan gum (XG), guar gum (GG), and glucomannan (GM), on bread quality characteristics were investigated. The composite flour used for bread production consisted of 80% bread flour and 20% rice flour with 1% different hydrocolloids based on baker's%. Loaf volume, specific loaf volume, baking and cooling loss rate, moisture content, crumb texture and color, and sensory evaluation were determined. Breads containing HPMC and GM showed the highest loaf volumes, but the difference was not significant. Bread containing GM showed the lowest baking and cooling loss rate (7.03 and 7.78%, respectively), and the highest moisture content. Breads containing HPMC and GM showed increased springiness and decreased hardness based on texture profile analysis. Cohesiveness, chewiness, and gumminess of breads containing GM and HPMC showed their lowest values, whereas breads containing XG revealed their highest values. Bread with HPMC showed lightest coloured crumbs. In the sensory evaluation, bread containing GM and HPMC presented their highest scores, whereas bread containing XG showed the lowest scores. Overall, HPMC and GM significantly and positively affected quality characteristics of bread.

Effect of Heat-Moisture Treatment of Domestic Rice Flours Containing Different Amylose Contents on Rice Noodle Quality (아밀로오스 함량이 다른 국내산 쌀가루의 수분-열처리가 쌀국수 품질에 미치는 영향)

  • Seo, Hye-In;Ryu, Bog-Mi;Kim, Chang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1597-1603
    • /
    • 2011
  • The influence of heat-moisture treatment (HMT) and substitution of rice flour containing different amylose contents on the quality characteristics of rice noodles was investigated. HMT was applied to rice flours with 21% moisture content at 100 and 105$^{\circ}C$ for 30 min. Three rice cultivars were used, including high amylose of Goami (GM) and intermediate amylose of Choochung (CC) as domestic rice flours and imported rice of Taeguk (TG) as a control. HMT and substitution of rice flour with different amylose contents affected the cooking and texture quality of rice noodles. When rice noodles were made of intermediate amylose rice flour with HMT, cooking properties improved with decreased cooking loss and cooking water turbidity and thus were closer to those of control. Especially, the hardness, adhesiveness, tensile strength, and darkness of rice noodles notably increased when HMT rice flour was used. Based on the results of quantitative descriptive analysis for selected rice noodles, the noodles made of HMT CC at 105$^{\circ}C$ (CC105) had high scores for resilience and adhesiveness and low scores for hardness compared with imported commercial rice noodles and other experimental noodles such as TG, HMT GM100, TG+CC, and TG+CC105. In conclusion, rice noodles were made of composite flours containing high amylose and intermediate amylose contents or HMT intermediate amylose content rice flour.