• Title/Summary/Keyword: GLEAM

Search Result 7, Processing Time 0.027 seconds

A study on the analyzing of uncertainty for actual evapotranspiration: flux tower, satellite-based and reanalysis based dataset (실제증발산 자료의 불확실성 파악에 관한 연구: flux tower, 인공위성 및 재분석자료)

  • Baik, Jongjin;Jeong, Jaehwan;Park, Jongmin;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • In this study, the actual evapotranspiration products of Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM) and MOD16, which are satellite- and reanalysis-based dataset, were validated at the flux tower sites (i.e., CFK and SMK) managed by Korea Institute of Hydrological Survey, and the uncertainty and correlation analysis were conducted using Triple Collocation (TC) method. The result of validation with the flux tower showed better agreement in the order of GLEAM> GLDAS>MOD16. At the result of three combinations (S1: flux tower vs. GLDAS vs. MOD16, S2: flux tower vs. GLDAS vs. GLEAM, S3: flux tower vs. GLEAM vs. MOD16), the order of best to worst is GLEAM, GLDAS, MOD16, and flux tower for CFK (GLDAS> GLEAM>MOD16>flux tower for SMK). Since the error variance and correlation coefficients of the flux tower show relatively worse performance in TC analysis than the other products, By applying TC method to three products (GLDAS vs. GLEAM vs. MOD16), the uncertainty of each dataset were evaluated at the Korean Peninsula, As a results, the GLDAS and GLEAM performed reasonable performance (low error variance and high correlation coefficient), whereas results of MOD16 showed high error variance and low correlation coefficient at the cropland.

Adequacy evaluation of the GLDAS and GLEAM evapotranspiration by eddy covariance method (에디공분산 방법에 의한 GLDAS와 GLEAM 증발산량의 적정성 평가)

  • Lee, Yeongil;Im, Baeseok;Kim, Kiyoung;Rhee, Kyounghoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.889-902
    • /
    • 2020
  • This study was performed in Seolmacheon basin to evaluate the adequacy of GLDAS (Global Land Data Assimilation System) and GLEAM (Global Land Evaporation Amsterdam Model) evapotranspiration data. The verification data necessary for the evaluation of adequacy were calculated after processing the latent heat flux data produced in the Seolmacheon basin with the Koflux program. In order to gap-fill the empty period, alternative evapotranspiration was calculated in three ways: FAO-PM (Food and Agriculture Organization-Penman Monteith), MDV (Mean Diurnal Variation) and Kalman Filter. This study selected Kalman Filter method as the data gap-filling method because it showed the best Bias and RMSE among the three methods. The amount of GLDAS spatial evapotranspiration was calculated as Noah (version 2.1) with a time interval of 3 hours and a spatial resolution of 0.25°. The amount of GLEAM spatial evapotranspiration was calculated using GLEAM (version 3.1a). This study evaluated the spatial evapotranspiration of GLDAS and GLEAM as the evapotranspiration based on eddy covariance. As a result of evaluation, GLDAS spatial evapotranspiration showed better results than GLEAM. Accordingly, in this study, the GLDAS method was proposed as a method for calculating the amount of spatial evapotranspiration in the Seolmacheon basin.

Merging technique for evapotranspiration based on in-situ, satellite, and reanalysis data using modifed KGE fusion method (수정된 KGE 방법을 활용한 지점, 인공위성, 재분석 자료 기반 증발산 융합 기술)

  • Baik, Jongjin;Jeong, Jaehwan;Park, Jongmin;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The modified Kling-Gupta efficiency fusion method to merge actual evapotranspiration was proposed and compared with the simple Taylor skill's score method using Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM), MODIS Global Evapotranspiration Project (MOD16), and the flux tower on three different land cover types over the Korean peninsula and China. In the results of the weights estimated from two actual evapotranspiration merging techniques (i.e., STS and KGF), the weights of reanalysis data (i.e, GLDAS and GLEAM) in cropland and grassland showed similar performance, while the results of weights are different according to the merging techniques in forest. Both two merging techniques showed better results than original dataset in grassland and forest. However, there were no improvement in cropland compared to the other land cover types. The results of the KGF method slightly improved compared to those of the STS in grassland and forest.

Implementation of blow situation with very shift-ductile-dot on the honk changing-status of constituted function

  • Kim, Jeong-lae;Hwang, Kyu-sung;Choi, Sung-Jai;Im, Yong-Soon
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.187-193
    • /
    • 2022
  • We is configured the honk changing-status technique that is to meld the square-built blow-shock status of the gleam-differential perception level (BIAL) on the honk perception lineament. The perception level condition by the honk perception lineament system is constituted with the blow-shock system. As to experimentation a ductile-dot of the gleam ductile-dot, we are found of the honk value with ductile-dot by the blow upper shift. The concept of perception level is constituted the reference of gleam-differential level for changing-status signal by the honk shock lineament. Further symbolizing a square-built changing-status of the BIAL, of the average in terms of the blow-shock lineament, and the honk ductile-dot shock that was the honk value of the far changing-status of the Ho-PL-FA-θAVG with 15.41±8.63 units, that was the honk value of the convenient changing-status of the Ho-PL-CO-θAVG with 8.70±3.06 units, that was the honk value of the flank changing-status of the Ho-PL-HO-θAVG with 2.65±1.19 units, that was the honk value of the edge changing-status of the Ho-PL-VI-θAVG with 0.51±0.18 units. The blow shock will be to investigate at the square-built ability of the blow-shock lineament with ductile-dot by the honk perception level on the BIAL, that is denote the gleam-differential lineament by the perception level system. We will be possible to curb of a lineament by the differential signal and to employ the honk data of blow shock level by the blow perception system.

Estimation of the optimal evapotranspiration by using satellite- and reanalysis model-based evapotranspiration estimations (인공위성과 재분석모델 자료의 다중 증발산 자료를 활용하여 최적 증발산 산정 연구)

  • Baik, Jongjin;Jeong, Jaehwan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.273-280
    • /
    • 2018
  • Accurate estimation of evapotranspiration is mightily important for understanding and analyzing the hydrological cycle. There are various methods for estimating evapotranspiration and each method has its own advantages and limitations. Therefore, it is necessary to develop an optimal evapotranspiration product by combing different evapotranspiration products. In this study, we developed an optimal evapotranspiration by fusing two satellite- and model-based evapotranspiration estimates, including revised remote sensing-based Penman-Monteith (RS-PM) and Modified Satellite-Based Priestley-Taylor (MS-PT) methods, Global Land Data Assimilation System (GLDAS), and Global Land Evaporation Amsterdam Model (GLEAM). The statistical analysis (i.e., correlation coefficients, index of agreement, MAE, and RMSE) of combined evapotranspiration product showed to be improved compared to the individual model results. After confirming the overall results, in future studies, advanced data fusion techniques will be used to obtained improved results.

Construction of the permeate tuner system by the steeple morph of the matter

  • Kim, Jeong-lae;Lee, Woo-cheol
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.187-192
    • /
    • 2018
  • Permeate alteration technique is compounded the steeple sway-tuner status of the gleam-differential realization level (GDRL) on the permeate realization morph. The realization level condition by the permeate realization morph system is associated with the sway-tuner system. As to search a dot of the dot situation, we are gained of the permeate value with character-dot by the output signal. The concept of realization level is composed the reference of gleam-differential level for alteration signal by the permeate tuner morph. Moreover displaying a steeple alteration of the GDRL of the average in terms of the sway-tuner morph, and permeate dot tuner that was the a permeate value of the far alteration of the $Per-rm-FA-{\alpha}_{AVG}$ with $14.63{\pm}1.23units$, that was the a permeate value of the convenient alteration of the $Per-rm-CO-{\alpha}_{AVG}$ with $8.28{\pm}0.97units$, that was the a permeate value of the flank alteration of the $Per-rm-FL-{\alpha}_{AVG}$ with $3.28{\pm}0.58units$, that was the a permeate value of the vicinage alteration of the $Per-rm-VI-{\alpha}_{AVG}$ with $0.51{\pm}0.10units$. The sway tuner will be to evaluate at the steeple ability of the sway-tuner morph with character-dot by the permeate realization level on the GDRL that is displayed the gleam-differential morph by the realization level system. Sway realization system will be possible to control of a morph by the special signal and to use a permeate data of sway tuner level.

Evaluation of near-realtime weekly root-zone Soil Moisture Index (SMI) for the extreme climate monitoring web-service across East Asia (동아시아 이상기후 감시 서비스를 위한 지면모형 기반 준실시간 토양수분지수평가)

  • Chun, Jong Ahn;Lee, Eunjeong;Kim, Daeha;Kim, Seon Tae;Lee, Woo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.409-416
    • /
    • 2020
  • An extreme climate monitoring is essential to the reduction of socioeconomic damages from extreme events. The objective of this study was to produce the near-realtime weekly root-zone Soil Moisture Index (SMI) on the basis of soil moisture using the Noah 3.3 Land Surface Model (LSM) for potentially monitoring extreme drought events. The Yangtze basin was selected to evaluate the Noah LSM performance for the East Asia region (15-60°N, 70-150°E) and the evapotranspiration (ET) and sensible heat flux (SH) were compared with ET and SH from FluxNet and with ET from FluxCom, Global Land Evaporation Amsterdam Model (GLEAM), ERA-5, and Generalized Complementary Relationship (GCR). For the ET, the coefficients of determination (R2) were higher than 0.96, while the R2 value for the SH was 0.71 with slightly lower than those. A time series of the weekly root-zone SMI revealed that the regions with Extreme drought had been expanded from the northern part of East China to the entire East China between July to October 2019. The trend analysis of the number of extreme drought events showed that extreme drought events in spring had reduced in South Korea over the past 20 years, while those in fall had a tendency to increase. It is concluded that this study can be useful to reduce the socioeconomic damages resulted from climate extremes by comprehensively characterizing extreme drought events.