• Title/Summary/Keyword: GK2A

Search Result 136, Processing Time 0.023 seconds

Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer (정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로)

  • Shin, Yeji;Han, Daehyeon;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1405-1423
    • /
    • 2021
  • Precipitation is one of the main factors that affect water and energy cycles, and its estimation plays a very important role in securing water resources and timely responding to water disasters. Satellite-based quantitative precipitation estimation (QPE) has the advantage of covering large areas at high spatiotemporal resolution. In this study, machine learning-based rainfall intensity models were developed using Himawari-8 Advanced Himawari Imager (AHI) water vapor channel (6.7 ㎛), infrared channel (10.8 ㎛), and weather radar Column Max (CMAX) composite data based on random forest (RF). The target variables were weather radar reflectivity (dBZ) and rainfall intensity (mm/hr) converted by the Z-R relationship. The results showed that the model which learned CMAX reflectivity produced the Critical Success Index (CSI) of 0.34 and the Mean-Absolute-Error (MAE) of 4.82 mm/hr. When compared to the GeoKompsat-2 and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) rainfall intensity products, the accuracies improved by 21.73% and 10.81% for CSI, and 31.33% and 23.49% for MAE, respectively. The spatial distribution of the estimated rainfall intensity was much more similar to the radar data than the existing products.

Production of Fructose 6-Phoschate from Starch Using Thermostable Enzymes (내열성 효소를 이용한 전분으로부터 6-인산과당의 제조)

  • Kwun, Kyu-Hyuk;Cha, Wol-Suk;Kim, Bok-Hee;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.345-350
    • /
    • 2007
  • Phosphosugars are found in all living organisms and are commercially valuable compounds with possible applications in the development of a wide range of specialty chemicals and medicines. In carbohydrate metabolism, fructose 6-phosphate (F6P) is an essential intermediate formed by phosphorylation of 6' position of fructose in glycolysis, gluconeogenesis, pentose phosphate pathway and Calvin cycle. In glycolysis, F6P lies within the glycolysis metabolic pathway and is produced by isomerisation of glucose 6-phosphate. For large-scale production, F6P could be produced from starch using many enzymes such as pullulanase, starch phosphorylase, isomerase and mutase. In enzymatic reactions carried out at high temperatures, the solubility of starch is increased and microbial contamination is minimized. Thus, thermophile-derived enzymes are preferred over mesophile-derived enzymes for industrial applications using starch. Recently, we reported the production of glucose 1-phosphate (G1P) from starch by Thermus caldophilus GK24 enzymes. Here we report the production of F6P from starch through three steps; from starch to glucose 1-phosphate (glucan phosphorylase, GP), then glucose 6-phosphate (phosphoglucomutase, GM) and then F6P (phosphoglucoisomerase, GI). Using 200 L of 1.2% soluble starch solution in potassium phosphate buffer, 1,253 g of G1P were produced. Then, 30% yields of F6P were attained at the optimum reaction conditions of GM : G1 (1 : 2.3), 63.5$^{\circ}C$, and pH 6.85. The optimum conditions were found by response surface methodology and the theoretical values were confirmed by the experiments. The optimum starch concentrations were 20 g/L under the given conditions.

Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice

  • Sun, Xufeng;Yamasaki, Masayuki;Katsube, Takuya;Shiwaku, Kuninori
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.137-143
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Mulberry leaves contain quercetin derivatives, which have the effects of reducing obesity and improving lipid and glucose metabolism in mice with obesity. It is not clear whether or not mulberry leaves can directly affect metabolic disorders, in the presence of obesity, because of the interaction between obesity and metabolic disorders. The aim of the current study was to assess the direct action of quercetin derivatives on metabolic disorders in non-obese conditions in short-term high-fat diet fed mice. MATERIALS/METHODS: C57BL/6N mice were fed a high-fat diet, supplemented with either 0% (control), 1%, or 3% mulberry leaf powder (Mul) or 1% catechin powder for five days. Anthropometric parameters and blood biochemistry were determined, and hepatic gene expression associated with lipid and glucose metabolism was analyzed. RESULTS: Body and white fat weights did not differ among the four groups. Plasma triglycerides, total cholesterol, and free fatty acids in the 1%, 3% Mul and catechin groups did not differ significantly from those of the controls, however, plasma glucose and 8-isoprostane levels were significantly reduced. Liver gene expression of gp91phox, a main component of NADPH oxidase, was significantly down-regulated, and PPAR-${\alpha}$, related to ${\beta}$-oxidation, was significantly up-regulated. FAS and GPAT, involved in lipid metabolism, were significantly down-regulated, and Ehhadh was significantly up-regulated. Glucose-metabolism related genes, L-PK and G6Pase, were significantly down-regulated, while GK was significantly up-regulated in the two Mul groups compared to the control group. CONCLUSIONS: Our results suggest that the Mul quercetin derivatives can directly improve lipid and glucose metabolism by reducing oxidative stress and enhancing ${\beta}$-oxidation. The 1% Mul and 1% catechin groups had similar levels of polyphenol compound intake ($0.4{\times}10^{-5}$ vs $0.4{\times}10^{-5}$ mole/5 days) and exhibited similar effects, but neither showed dose-dependent effects on lipid and glucose metabolism or oxidative stress.

Adsorption Characteristics Evaluation of Natural Zeolite for Heavy-metal Contaminated Material Remediation (중금속 오염물질 정화를 위한 천연제올라이트의 흡착특성)

  • Shin, Eun-Chul;Park, Jeong-Jun;Jeong, Cheol-Gyu;Kim, Sung-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.59-67
    • /
    • 2014
  • The amount of the contaminants that can be adsorbed on the drain was evaluated for the effective remediation of the contaminated soil, and the contaminants adsorptivity of the drain was evaluated by comparing the isothermal adsorption model after carrying out the contaminants adsorption test of the reactants coated on the surface of the drain. The reactant used in the experiment is a natural zeolite, and the contaminants are copper, lead and cadmium. The results that Freundlich and Langmuir adsorption isotherm model are compared to the adsorption amount according to the change of the initial concentration by the contaminants. As a result of the component analysis, because Si, Al and O are contained approximately 28%, 11% and 48%, respectively, it is identified that the material coated on the surface of the drain is the component of the zeolite which is the reactant for the adsorption of the heavy-metal (Cu, Pb, Cd) contaminants. The heavy-metal adsorption kinetic of the zeolite which is the reactant was decreased in order of lead, copper and cadmium. The important factor of the performance evaluation of the adsorbent is the reaction rate, and if zeolite is used as the reactant in the relationship between the maximum amount of adsorption and reaction rate, it can be utilized as the design factor that determine the removal order of the complex heavy-metal. In other words, because the maximum adsorption quantity of lead is smaller compared to copper but the reaction rate is relatively fast, it can be primarily removed, and copper can be removed after removing the lead. It was analyzed that Cadmium can be finally removed after that other heavy-metal is removed.

Chlorogenic Acid Enhances Glucose Metabolism and Antioxidant System in High-fat Diet and Streptozotocin-induced Diabetic Mice (고지방식이와 스트렙토조토신으로 유도한 당뇨마우스에서 Chlorogenic Acid의 혈당강하 및 항산화 효과)

  • Lee, Jin;Seo, Kwon-Il;Kim, Myung-Joo;Lee, Su-Jin;Park, Eun-Mi;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.6
    • /
    • pp.774-781
    • /
    • 2012
  • This study investigated dose-response effects of chlorogenic acid (CA) on glucose metabolism and the antioxidant system in streptozotocin (STZ)-induced diabetic mice with a high-fat diet (HFD). Male ICR mice were fed with a HFD (37% calories from fat) for 4 weeks prior to intraperitoneal injection with STZ (100 mg/kg body weight). Diabetic mice were supplemented with two doses of CA (0.02% and 0.05%, wt/wt) for 6 weeks. Both doses of CA significantly improved fasting blood glucose level, glucose tolerance and insulin tolerance without any changes in plasma insulin and C-peptide levels. Plasma leptin concentration was significantly higher in the CA-supplemented groups than in the diabetic control group. Both doses of CA significantly increased hepatic glucokinase activity and decreased glucose-6-phosphatase activity compared to the diabetic control group. The ratio of glucokinase/glucose-6-phosphatase was dose-independently higher in CA-supplemented mice than in diabetic control mice. CA supplementation dose-independently elevated superoxide dismutase and catalase activities, whereas it lowered lipid peroxide levels compared to the diabetic control mice in the liver and erythrocyte. These results suggest that low-dose CA may be used as a hypoglycemic agent in a high-fat diet and STZ-induced diabetic mice.

Exploration of optimum conditions for production of saccharogenic mixed grain beverages and assessment of anti-diabetic activity (잡곡당화음료 제조 최적 조건 탐색 및 항당뇨 활성 평가)

  • Lee, Jae Sung;Kang, Yun Hwan;Kim, Kyoung Kon;Yun, Yeong Kyeong;Lim, Jun Gu;Kim, Tae Woo;Kim, Dae Jung;Won, Sang Yeon;Bae, Moo Hoan;Choi, Han Seok;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.1
    • /
    • pp.12-22
    • /
    • 2014
  • Purpose: This study was conducted to establish the production conditions through optimization of the production process of beverages using Aspergillus oryzae CF1001, and to analyze volatile compounds and antidiabetic activity. Methods: The optimum condition was selected using the response surface methodology (RSM), through a regression analysis with the following independent variables gelatinization temperature (GT, $X_1$), saccharogenic time (ST, $X_2$), and dependent variable; ${\Delta}E$ value (y). The condition with the lowest ${\Delta}E$ value occurred with combined 45 min ST and $50^{\circ}C$ GT. The volatile compounds were analyzed quantitatively by GC-MS. Results: Assessment of antidiabetic activity of saccharogenic mixed grain beverage (SMGB) was determined by measurement of ${\alpha}$-glucosidase inhibition activity, and glucose uptake activity and glucose metabolic protein expression by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. Results of volatile compounds analysis, 62 kinds of volatile compounds were detected in SMGB. Palmitic acid (9.534% ratio), benzaldehyde (8.948% ratio), benzyl ethyl ether (8.792% ratio), ethyl alcohol (8.35% ratio), and 2-amyl furan (4.826% ratio) were abundant in SMGB. We confirmed that ${\alpha}$-glucosidase inhibition activity, glucose uptake activity, and glucose-metabolic proteins were upregulated by SMGB treatment with concentration dependent manner. Conclusion: Saccharogenic mixed grain beverage (SMGB) showed potential antidiabetic activity. Further studies will be needed in order to improve the taste and functionality of SMGB.