• Title/Summary/Keyword: GIS map

Search Result 1,536, Processing Time 0.024 seconds

Estimation of Agricultural Water Quality Using Classification Maps of Water Chemical components in Seonakdong River Watershed (수질성분 분포도를 이용한 서낙동강 수계 농업용수 수질평가)

  • Ko, Jee-Yeon;Lee, Jae-Sang;Kim, Choon-Song;Jeong, Ki-Yeol;Choi, Young-Dae;Yun, Eul-Soo;Park, Seong-Tae;Kang, Hwang-Won;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.138-146
    • /
    • 2006
  • To understand the status of water quality and work out a suitable countermeasures in Seonakdong watershed which has poor agro- environmental condition because of severe point and non-point source pollution by popularized city and near sea, we investigated the pollution sources and water quality from '03 and '05 and the result were mapped with GIS and RS for end-users's convenient comprehense and conjunction of water quality and geological data. The most degraded tributary was Hogeo stream which was affected directly by highly popularized Gimhae city, the main pollution source of the watershed. The pollution of tributaries in watershed increased the T-N of main body that reached over 4 mg/L during dry season. Pyeonggang stream and the lower part of main water way were suffered from high salt contents induced near sea and the EC value of those area were increased to 2.25 dS/m. The delivered loads of T-N and T-P were largest in Joman river as 56% and 61% of total delivered loads 1mm tributaries because of lots of stream flow. When Management mandate for irrigation water in Seonakdong river watershed was mapped for estimating integrated water quality as the basis of classification of EC and T-N contents in water, Hogeo and Shineo catchments were showed the requiring countermeasures none against nutrients hazard and Pyeonggang catchment was the vulnerable zone against nutrients and salts hazard. As the result, Seonakdong watershed had very various status of water quality by characteristics of catchments and countermeasures for improving water quality and crop productivity safely should changed depend on that.

Geo-surface Environmental Changes and Reclaimed Amount Prediction Using Remote Sensing and Geographic Information System in the Siwha Area (원격탐사와 지리정보시스템을 이용한 시화지구 일대의 지표환경변화와 토공량 예측연구)

  • Yang, So-Yeon;Song, Moo-Young;Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.161-176
    • /
    • 1999
  • The objectives of this study are to analyze the changes of geo-surface topography in the Siwha embankment and the Ahsan city area by the image processing of Landsat Thematic Mapper data, and to estimate the reclaimed amount of the exposed tidal flat in the Siwha area using the GIS. False color composite, Tasseled cap, NVDI(normalized difference vegetation index), and supervised classification techniques were used to analyze the distribution of sediments and the aspect of topographical variations caused by artificial human actions. The total amount of the exposed tidal flat was estimated on the basis of the database snch as aerial photography, hydrographic chart, geological map, and scheme drawing in the Siwha area. The possible excavation regions for a seawall were predicted analyzing the supervised classification image of Landsat TM data. Tasseled cap images were used to observe the distribution of sediments. The difference of the NDVI images between spring and summer seasons indicates that deciduous and coniferous forests were distributed over the whole areas. The total fill-volume of the exposed Siwha tidal flat and the fill-volume of the construction planning seawall were calculated as $581,485,354\textrm{m}^3{\;}and{\;}3,387,360\textrm{m}^3$, respectively, from the digital terrain analysis. Daebu Island, Sunkam Island, and the part of Songsan-myeon were chosen as the cut area to make the seawall, and their cut-volumes were estimated as $5,229,576\textrm{m}^3,{\;}79,227,072\textrm{m}^3,{\;}and{\;}47,026,008\textrm{m}^3$, respectively. Therefore, the cut-volume of Daebu Island alone among three areas was sufficient to make the seawall.

  • PDF

Predicting the Goshawk's habitat area using Species Distribution Modeling: Case Study area Chungcheongbuk-do, South Korea (종분포모형을 이용한 참매의 서식지 예측 -충청북도를 대상으로-)

  • Cho, Hae-Jin;Kim, Dal-Ho;Shin, Man-Seok;Kang, Tehan;Lee, Myungwoo
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.333-343
    • /
    • 2015
  • This research aims at identifying the goshawk's possible and replaceable breeding ground by using the MaxEnt prediction model which has so far been insufficiently used in Korea, and providing evidence to expand possible protection areas for the goshawk's breeding for the future. The field research identified 10 goshawk's nests, and 23 appearance points confirmed during the 3rd round of environmental research were used for analysis. 4 geomorphic, 3 environmental, 7 distance, and 9 weather factors were used as model variables. The final environmental variables were selected through non-parametric verification between appearance and non-appearance coordinates identified by random sampling. The final predictive model (MaxEnt) was structured using 10 factors related to breeding ground and 7 factors related to appearance area selected by statistics verification. According to the results of the study, the factor that affected breeding point structure model the most was temperature seasonality, followed by distance from mixforest, density-class on the forest map and relief energy. The factor that affected appearance point structure model the most was temperature seasonality, followed by distance from rivers and ponds, distance from agricultural land and gradient. The nature of the goshawk's breeding environment and habit to breed inside forests were reflected in this modeling that targets breeding points. The northern central area which is about $189.5 km^2$(2.55 %) is expected to be suitable breeding ground. Large cities such as Cheongju and Chungju are located in the southern part of Chungcheongbuk-do whereas the northern part of Chungcheongbuk-do has evenly distributed forests and farmlands, which helps goshawks have a scope of influence and food source to breed. Appearance point modeling predicted an area of $3,071 km^2$(41.38 %) showing a wider ranging habitat than that of the breeding point modeling due to some limitations such as limited moving observation and non-consideration of seasonal changes. When targeting the breeding points, a specific predictive area can be deduced but it is difficult to check the points of nests and it is impossible to reflect the goshawk's behavioral area. On the other hand, when targeting appearance points, a wider ranging area can be covered but it is less accurate compared to predictive breeding point since simple movements and constant use status are not reflected. However, with these results, the goshawk's habitat can be predicted with reasonable accuracy. In particular, it is necessary to apply precise predictive breeding area data based on habitat modeling results when enforcing an environmental evaluation or establishing a development plan.

A Study of a Correlation Between Groundwater Level and Precipitation Using Statistical Time Series Analysis by Land Cover Types in Urban Areas (시계열 분석법을 이용한 도시지역 토지피복형태에 따른 지하수위와 강수량의 상관관계 분석)

  • Heo, Junyong;Kim, Taeyong;Park, Hyemin;Ha, Taejung;Kang, Hyungbin;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1819-1827
    • /
    • 2021
  • Land-use/cover change caused by rapid urbanization in South Korea is one of the concerns in flood risk management because groundwater recharge by precipitation hardly occurs due to an increase in impermeable surfaces in urban areas. This study investigated the hydrologic effects of land-use/cover on groundwater recharge in the Yeonje-gu district of Busan, South Korea. A statistical time series analysis was conducted with temporal variations of precipitation and groundwater level to estimate lag-time based on correlation coefficients calculated from auto-correlation function (ACF), cross-correlation function (CCF), and moving average (MA) at five sites. Landform and land-use/cover within 250 m radius of the monitoring wells(GW01, GW02, GW03, GW04, and GW05) at five sites were identified by land cover and digital map using Arc-GIS software. Long lag-times (CCF: 42-71 days and MA: 148-161 days) were calculated at the sites covered by mainly impermeable surfaces(GW01, GW03, and GW05) while short lag-times(CCF: 4 days and MA: 67 days) were calculated at GW04 consisting of mainly permeable surfaces. The results suggest that lag-time would be one of the good indicators to evaluate the effects of land-use/cover on estimating groundwater recharge. The results of this study also provide guidance on the application of statistical time series analysis to environmentally important issues on creating an urban green space for natural groundwater recharge from precipitation in the city and developing a management plan for hydrological disaster prevention.

Contract Farming Through a Cooperative to Boost Agricultural Sector Restructuring: Evidence from a Rural Commune in Central Vietnam (베트남 농업구조개혁과 협동조합의 계약영농: 중부베트남의 농촌을 사례로)

  • Duong, Thi Thu Ha;Kim, Doo-Chul
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.109-130
    • /
    • 2022
  • The Vietnamese government has proposed contract farming through a new type of cooperative as an institutional innovation which aims to restructure the agricultural sector. However, policy changes often impact farmers, who bear the primary effects of the transition process. Understanding households' strategies for land use and livelihood is crucial for policymaking in the agricultural development field. This study was conducted in the rural Binh Dao commune in Central Vietnam. We analyzed household members' labor force changes and their livelihood behaviors after their participation in a contract farming scheme using qualitative analysis methods combined with geographic information system (GIS) support, based on secondary data and in-depth interviews of 190 farmers. Simultaneously, we created a digital map of the cooperative's production area to investigate changes in land use and production activities. The findings show that contract farming shaped the vertical coordination of the value chain from the farmers to the cooperative and agricultural product trading companies. Subsequently, it encouraged land use and labor efficiency due to mechanical support. In addition, it also increased productivity and protected farmers from market risks. However, despite its positive effects on agricultural productivity in this case, the contract farming scheme could not achieve the restructuring of the rural labor force toward non-agricultural sectors. Ironically, farmers in the Binh Dao commune tended to increase cultivable land during the agricultural restructuring program, rather than switching their labor forces to non-agricultural sectors. The lack of stable non-farming job opportunities in rural Vietnam results in challenges to the efficiency of agricultural restructuring programs. Consequently, farmers in the Binh Dao commune are still smallholder farmers, depending on the family labor force.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.