• 제목/요약/키워드: GIS 공간 분석

Search Result 1,865, Processing Time 0.025 seconds

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.

Study on the Strategy for Managing Aggregate Supply and Demand in Gyeongsangbuk-do, South Korea (경상북도 골재수요-공급 관리 전략 연구)

  • Jin-Young Lee;Sei Sun Hong;Chul Seoung Baek
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.161-175
    • /
    • 2024
  • Aggregate typically refers to sand and gravel formed by the transportation of rocks in rivers or artificially crushed, constituting a core resource in the construction industry. Gyeongsangbuk-do, the largest administrative area in South Korea, produces various sources of gravel, including forest, land (excluding other sources), river, and crushed stone. As of 2022, it has extracted approximately 6.96 million cubic meters of aggregate, with permitted production totaling around 4.07 million cubic meters and reported production of about 2.88 million cubic meters. The aggregate demand in Gyeongsangbuk-do is estimated to be 12.39 million cubic meters according to the estimation method in Ready-Mix Concrete. From the supply perspective, about 120 extraction sites are operational, with most municipalities maintaining an appropriate balance between aggregate demand and supply. However, in some areas, there is inbound and outbound transportation of aggregate to neighboring regions. Regions with significant inbound and outbound aggregate transportation in Gyeongsangbuk-do are areas connected to Daegu Metropolitan City and Pohang City along the Gyeongbu rail line, showing a high correlation with population distribution. Gyeongsangbuk-do faces challenges such as population decline, aging rural areas, and insufficient balanced regional development. Analysis using GIS reveals these trends in gravel demand and supply. Currently in this study, Gyeongsangbuk-do meets its demand for aggregate through the supply of various aggregate sources, maintaining stable aggregate procurement. River and terrestrial aggregates may be sustained as short-term supply strategies due to the difficulty of longterm development. Considering the reliance on raw material supply for selective crushing, it suggests the need for raw material management to maintain stability. Gyeongsangbuk-do highlights quarries in the forest as an important resource for sustainable aggregate supply, advocating for the development of large-scale aggregate quarries as a long-term alternative. These research findings are expected to provide valuable insights for formulating strategies for sustainable management and stable utilization of aggregate resources.

Aesthetic Landscape Assessment Based on Landscape Units in the Han River Riparian Area (경관단위 기반 수변환경의 심미적 평가 - 한강 수변을 대상으로 -)

  • Bae, Min-Ki;Park, Chang-Sug;Oh, Chung-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.43-56
    • /
    • 2012
  • The purpose of this study was to propose management strategies through aesthetic landscape assessments for landscape units in the Han River riparian(HRR) area. First, this research reclassified the HRR into "natural," "artificial," "agricultural," and mixed landscape types and selected 37 representative case areas(about $1km{\times}1km$). This study found 71 landscape units in consideration of topography and land surface classification. Landscape assessment consisted of landscape quality and landscape integration assessment. The criteria for assessing landscape quality were "naturalness," "interest," "uniqueness," and "landscape function." "Landscape quality" was ranked into five grades using a matrix. The landscape integration assessment consisted of an inner integration assessment in each landscape unit and outer integration assessment among landscape units. As a result of the field study, case sites were found to have 4,288 landscape units and an area of $42.8km^2$. The forest area was found to have the most space with $11,580,905m^2$(27.1%), while the wet lands had just $52,348m^2$(0.1%). In the landscape quality assessment, about 30.5% of the total area consisted of landscape units that scored highest in "naturalness". In the landscape integration assessment, about 39.3% of the total area consisted of landscape units which scored highest in "integration", denoting visual interrelation and harmony. The existence of disparities in landscape quality in accordance with the form of the landscaping was determined using a Oneway ANOVA, with "naturalistic" landscaping scoring the highest and "artificial" landscaping scoring lowest. This study may contribute to making the HRR area a more ecologically sound and visually attractive landscape space. It is recommended that the aesthetical and ecological value of the landscape unit should be assessed simultaneously in the future.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.