• 제목/요약/키워드: GIRDER

검색결과 2,105건 처리시간 0.028초

Structural Behavior of Polymer Concrete Bos Girders (폴리머콘크리트 박스 거어더의 구조적 거동)

  • 연규석;김광우;이윤수;김성순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.213-219
    • /
    • 1993
  • The box girder was developed using polymer concrete, box girder were made for flexural behavior evaluation. The box girder was reinforced with reinforcing steel bars and fiber glass roving cloths. Failure loads were 13.5 tons and 16.6tons for steel reinforced girder and fiber glass reinforced girder, respectively. Especially for the fiber glass reinforced girder, the shape was not changed even after failure. It is expected that application of this idea will be useful for developing under ground box, girder, utility tunnel, small stream bridge box, etc.

  • PDF

Monitoring of Atmospheric Corrosivity inside Steel Upper Box Girder in Yeongjong Grand Bridge

  • Li, SeonYeob
    • Corrosion Science and Technology
    • /
    • 제10권3호
    • /
    • pp.87-94
    • /
    • 2011
  • The typical corrosion prevention method inside the steel upper box girder in a suspension bridge involves the use of paints. However, in an effort to reduce environmental impact and cost, the suspension portion of the Yeongjong Bridge, Korea utilizes dehumidification systems to control humidity and prevent corrosion inside its box girder. Maintaining a uniform humidity distribution at the proper level inside the box girder is critical to the successful corrosion control. In this study, the humidity and the resultant atmospheric corrosivity inside the box girder of the Yeongjong Bridge was monitored. The corrosion rate of the steel inside the box girder was obtained using thin-film electrical resistance (TFER) corrosion sensors. Time-of-wetness (TOW) measurements and the deposition rates of atmospheric pollutants such as $Cl^{-}$ and $SO_{x}$ were also obtained. Classification of the atmospheric corrosivity inside the box girder was evaluated according to ISO 9223. As a result, no corrosion was found in the upper box girder, indicating that the dehumidification system used in the Yeongjong Bridge is an effective corrosion control method.

Development of Deck System for Two-Girder Bridges (합리화 2주형교용 바닥판의 개발을 위한 실험 연구)

  • 주봉철;김병석;김영진;박성용;이정우;신호상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.113-118
    • /
    • 2001
  • The two-girder composite bridge has the girder space of more than 5m, for special case, over than 15m. Therefor, the design and construction of this bridge system require new approaches. To ensure the structural safety, the deck depth should be increased. Therefore, the economically designed deck system is necessary for th two-girder bridge. This study is the first step to develop the deck system for two-girder bridges. In this study, a literatute survey is performed to develop a new deck system for two-girder type of bridges. By considering the characteristics of two-girder bridge system, a cast-in-place PSC deck is proposed for the two-girder bridges. To examine structural behavior and safety of the proposed PSC deck, three real scale partition deck(3m$\times$5m) are tested under the static loading. In the test, the failure mode and behavior of each specimen, and ultimate load carrying capacity of the two-girder-bridge deck are identified.

  • PDF

Influence of Curbs and Median Strip on Wheel Load Distribution in Girder Bridges (거더교에서의 윤하중분배에 대한 연석과 중앙분리대의 영향에 관한 연구)

  • Oh, Byung-Hwan;Lim, Choon-Keun;Lew, Young;Kim, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.455-460
    • /
    • 2001
  • Generally, the contribution of curbs and median strip is not considered carefully in analysing and designing the girder bridges. There being curbs, the load given on interior girder relatively reduced and on exterior girder increased. Curbs and median strip reduce the load distribution factor by distributing the load given on girder fairly, In this paper, the Influence of curbs and median strip in wheel distribution through parameter study and lateral distribution test of PSC girder bridge was investigated. Finite-element analysis was performed with parameterizing the flexural rigidity of the girder, span length, girder spacing, median strip, curbs. The influence of curbs and median strip would increase with lowering rigidity of girder. In addition, curbs lower the load distribution factor of exterior and interior girders.

  • PDF

Development of Steel Confined Prestressed Concrete Girder (I형상의 강재로 구속된 프리스트레스트 콘크리트 충전 합성거더 시공기술(SCP 합성거더))

  • 엄영호;황윤국;김정호;권책;이우종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.601-608
    • /
    • 2003
  • A new type of bridge superstructures referred to as Steel-confined Prestressed Concrete Girder (SCP Girder) was developed, which is composed of concrete, steel plate, and prestressing tendon. The girder may maximize structural advantages of these components : thus, long span bridges with low height girder may be constructed. For the effective design and fabrication of the girder, the design software program was developed and the process of fabrication established. The experimental girder designed using the program was manufactured in actual size to confirm the fabric ability of the girder. Propriety of design, structural safety, and applicability of the girder were verified through the load test.

  • PDF

PSC Girder길이의 증가를 위한 단면형상 변화에 따른 비선형 구조해석

  • Kim, Se-Il
    • Proceeding of EDISON Challenge
    • /
    • 제4회(2015년)
    • /
    • pp.279-284
    • /
    • 2015
  • 본 논문은 하중에 따른 변화정도에 초점을 맞추어 PSC girder길이의 증가를 위해 Co-rotational Plane Beam with Arbitrary Section Solver를 통하여 비선형 구조해석을 진행하여 Jeon, S., Choi, M., and Kim, Y. 등에 의해 제시된 Decked girder의 구조적 우수성을 검증하고, 이를 보완한 새로운 단면형상의 PSG girder를 제시하였다. 도출된 결과 값은 탄성방정식을 통하여 얻은 값과 비교하여 신뢰성을 검증하였다. 해석을 통하여 단순히 girder 상단부 플랜지의 길이를 증가시키는 것은 girder의 변형정도를 줄이는데 큰 영향을 주지 않는 다는 사실을 알 수 있었고 girder 상단부 플랜지와 중심부를 연결하는 부분의 단면형상을 좀 더 두껍게 함으로 하중에 따른 girder의 변형량을 크게 감소시킬 수 있었다.

  • PDF

A Study on the Applicability of Railway Bridge Using Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 거더를 이용한 철도교의 적용성 고찰)

  • Kim Jung-Ho;Hwang Yoon-Gook;Park Kyung-Hoon;Choi Il-Yoon;Lee Sang-Yoon
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1007-1013
    • /
    • 2004
  • A new type of girder named as Steel-Confined Prestressed Concrete Girder(SCP Girder) has been developed, which is composed of concrete, steel plate, and prestressing tendon. This girder may maximize structural advantages of these components, therefore it can be used to construct the middle or long span bridge with low-height girder. To verify the propriety of design, structural safety, and applicability of this girder, static load test was carried out. In this study, a design program was developed for practical design of railway bridge using SCP girder. And to verify the applicability of SCP girder to railway bridge, structural performance and economic efficiency based on the construction cost were compared with conventional railway bridges.

  • PDF

Flexural Test for a Monolithic Holed Web Prestressed Concrete (HWPC) Girder

  • Han, Man-Yop;Jin, Kyung-Suk;Choi, Sok-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권2호
    • /
    • pp.77-87
    • /
    • 2010
  • Prestressed concrete (PSC) I-type girders have been used for span length around up to 40 m in domestic region. PSC girders are very cost effective girder type and extending their lengths more than 50 m will bring large benefit in cost. A new design method was proposed by combining two notable design concept in order to extend the applicable span length in this study. First of all, several numbers of openings was introduced in the girder web, and half of the anchorage devices were moved into the openings. In this way, large compressive stress developed at end zone was reduced, and the portion of design load coming from self-weight was reduced as well. Secondly, prestressing force was introduced in the girder not once at the initial stage, but through multiple loading stages. A full scale girder with the length of 50 m with the girder depth of 2 m was fabricated, and a flexural test was conducted in order to verify the performance of newly developed girder. Test results showed that the new holed web design concept can provide a way to design girders longer than 50 meters with the girder height of 2 m.

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Lee Jong-Min;Seo Dong-Joo;Lee Tae-Gyun;Lee Joung-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • 제8권3호
    • /
    • pp.267-275
    • /
    • 2005
  • Prestressed concrete girder(PSC girder) bridges have been used widely at the railway as well as highway because they are great in the functional and economical efficiency. Also they have the advantage of convenience of design and construction. However it could be easily verified that the section of PSC girder is excessive design, which has much redundancy against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. In order to effective optimum design, design variables are formulated as PSC girder sectional dimension and girder space. The objective is adopted as total cost of PSC girder railway bridge. Also, constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder railway bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety and economical efficiency all together.

Improved prestressed concrete girder with hybrid segments system

  • Yim, Hong Jae;Yang, Jun Mo;Kim, Jin Kook
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.183-190
    • /
    • 2018
  • The prestressed concrete (PSC) technology that was first developed by Freyssinet has significantly improved over the past century in terms of materials and structural design in order to build longer, slender, and more economic structures. The application of prestressing method in structures, which is determined by the pre-tension or post-tension processes, is also affected by the surrounding conditions such as the construction site, workforce skills, and local transportation regulations. This study proposes a prestressed concrete girder design based on a hybrid segment concept. The adopted approach combines both pre-tension and post-tension methods along a simple span bridge girder. The girder was designed using newly developed 2400 MPa PS strands and 60 MPa high-strength concrete. The new concept and high strength materials allowed longer span, lower girder depth, less materials, and slender design without affecting the lateral stability of the girder. In order to validate the applicability of the proposed hybrid prestressed segments girder, a full-scale 35 m girder was fabricated, and experimental tests were performed under various fatigue and static loading conditions. The experimental results confirmed the feasibility of the proposed long-span girder as its performance meets the railway girder standards. In addition, the comparison between the measured load-displacement curve and the simulation results indicate that simulation analysis can predict the behavior of hybrid segments girders.